Effective data model selection for infological entities in multimodel database systems

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The article addresses the problem of selecting effective data models for infological entities in the context of designing multimodel databases. The focus is placed on the need for a systematic approach when modeling heterogeneous entities whose structure and behavior require different forms of representation. The study analyzes the characteristics of three widely used models – relational, graph, and multidimensional – in terms of their applicability to various types of infological entities. Key criteria influencing model selection are described, including data structure, interconnectivity, query patterns, mutability, scalability, and consistency requirements. A decision-making algorithm is proposed, based on analyzing entity characteristics and the system’s non-functional requirements. Particular attention is given to the advantages and challenges of multimodel solutions, as well as principles of coordinating different models within a unified architectural framework. The work aims to provide a methodological foundation for rational model selection and for enhancing the adaptability and sustainability of information systems.

Texto integral

Acesso é fechado

Sobre autores

Nikita Mishin

Bauman Moscow State Technical University

Autor responsável pela correspondência
Email: stancuem@yandex.ru
ORCID ID: 0009-0008-3076-8076
Código SPIN: 2572-3667

postgraduate student, Department of Information Processing and Control Systems

Rússia, Moscow

Gennady Afanasyev

Bauman Moscow State Technical University

Email: gaipcs@bmstu.ru

Cand. Sci. (Eng.), Associate Professor; associate professor

Rússia, Moscow

Rustam Khayrullin

Bauman Moscow State Technical University; Moscow State University of Civil Engineering (National Research University)

Email: zrkzrk@list.ru
ORCID ID: 0000-0002-0596-4955
Código SPIN: 6631-0932

Dr. Sci. (Eng.), Senior Scientific Worker; Professor

Rússia, Moscow; Moscow

Bibliografia

  1. Aguilar Vera R. et al. NoSQL database modeling and management: A systematic literature review. Revista Facultad de Ingeniería. 2023. Vol. 32. No. 65 (32). Art. e16519. doi: 10.19053/01211129.v32.n65.2023.16519.
  2. Daniel G. et al. NeoEMF: A multi-database model persistence framework for very large models. Science of Computer Programming. 2017. No. 149. Pp. 9–14. doi: 10.1016/j.scico.2017.08.002.
  3. Gabrielsen R.H., Olesen O. The Concept of lineaments in geological structural analysis; Principles and methods: A review based on examples from Norway. Geomatics. 2024. No. 2 (4). Pp. 189–212. doi: 10.3390/geomatics4020011.
  4. Gerasimov V.R., Dusheba V.V. Analysis of optimizing database performance methods // Èlektronnoe modelirovanie. 2024. No. 6 (46). Pp. 43–54. doi: 10.15407/emodel.46.06.043.
  5. Gupta S., Pal S., Chakraborty M. A Study on various database models: Relational, graph, and hybrid databases. Singapore: Springer, 2019. Pp. 141–149. doi: 10.1007/978-981-15-0361-0_11.
  6. Jiri H. et al. Multidimensional database for crime prevention. IEEE, 2016. Pp. 242–247. doi: 10.1109/carpathiancc.2016.7501102.
  7. Labiadh M. et al. A microservice-based framework for exploring data selection in cross-building knowledge transfer. Service Oriented Computing and Applications. 2020. No. 2 (15). Pp. 97–107. doi: 10.1007/s11761-020-00306-w.
  8. Larson D., Chang V. A review and future direction of agile, business intelligence, analytics and data science. International Journal of Information Management. 2016. No. 5 (36). Pp. 700–710. doi: 10.1016/j.ijinfomgt.2016.04.013.
  9. Lebedev I.I., Ogorodnikov S.S. Storage and analysis of remote sensing data // Russian Engineering Research. 2024. No. 4 (44). Pp. 597–599. doi: 10.3103/s1068798x24700485.
  10. Lou J. et al. Willingness to pay for well-being housing attributes driven by design layout: Evidence from Hong Kong. Building and Environment. 2024. No. 251. Art. 111227. doi: 10.1016/j.buildenv.2024.111227.
  11. Margara A. et al. A model and survey of distributed data-intensive systems. ACM Computing Surveys. 2023. No. 1 (56). Pp. 1–69. doi: 10.1145/3604801.
  12. Molka-Danielsen J., Engelseth P., Wang H. Large scale integration of wireless sensor network technologies for air quality monitoring at a logistics shipping base. Journal of Industrial Information Integration. 2018. No. 10. Pp. 20–28. doi: 10.1016/j.jii.2018.02.001.
  13. Murri S. Optimising data modeling approaches for scalable data warehousing systems. International Journal of Scientific Research in Science, Engineering and Technology. 2023. Pp. 369–382. doi: 10.32628/ijsrset2358716.
  14. Pekaric I. et al. A systematic review on security and safety of self-adaptive systems. Journal of Systems and Software. 2023. No. 203. Art. 111716. doi: 10.1016/j.jss.2023.111716.
  15. Petkov Y.I., Chikalanov A.I. Innovative proposals for database storage and management. Mathematics and Informatics. 2022. No. 1 (LXV). Pp. 45–52. doi: 10.53656/math2022-1-6-inn.
  16. Sarawagi S. Models and indices for integrating unstructured data with a relational database. Berlin; Heidelberg: Springer, 2005. Pp. 1–10. doi: 10.1007/978-3-540-31841-5_1.
  17. Shah K., Patel K.S. A Survey on relational database based multi relational classification algorithms. International Journal of Scientific Research in Computer Science, Engineering and Information Technology. 2024. No. 2 (10). Pp. 140–147. doi: 10.32628/cseit2390656.
  18. Shahidinejad J., Kalantari M., Rajabifard A. 3D cadastral database systems – a systematic literature review. ISPRS International Journal of Geo-Information. 2024. No. 1 (13). P. 30. doi: 10.3390/ijgi13010030.
  19. Tan Z., Yue P., Gong J. An array database approach for earth observation data management and processing. ISPRS International Journal of Geo-Information. 2017. No. 7 (6). P. 220. doi: 10.3390/ijgi6070220.
  20. Zhang J. et al. Public cloud networks oriented deep neural networks for effective intrusion detection in online music education. Computers and Electrical Engineering. 2024. No. 115. Art. 109095. doi: 10.1016/j.compeleceng.2024.109095.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Experimental methodology

Baixar (91KB)
3. Fig. 2. Clustering of data in three-dimensional space

Baixar (126KB)
4. Fig. 3. Polynomial functions for each data model

Baixar (43KB)

Declaração de direitos autorais © Yur-VAK, 2025

Link à descrição da licença: https://www.urvak.ru/contacts/