Mathematical model of stable task prioritization with dynamically adjustable criteria weights

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

This paper presents a robust mathematical model for task prioritization under conditions of multicriteria complexity, changing input parameters, and partial data incompleteness—common challenges in modern distributed and streaming digital environments. The proposed model automatically calculates criterion weights based on statistical variability (e.g., standard deviation) and dynamically adjusts them using feedback from task execution outcomes. Unlike traditional approaches such as AHP and TOPSIS – which require complete data and manual parameter tuning—the model is resistant to missing values, interpretable, and does not rely on retraining or imputation. A compensation mechanism for incomplete data and adaptation to changing feature structures is incorporated, ensuring consistent performance in fragmented and asynchronous information contexts. Comparative evaluation with machine learning models and heuristic methods shows that the proposed approach achieves high ranking accuracy (via Spearman correlation), stability under up to 50% missing data, and linear scalability as the number of tasks and criteria increases. Experimental results on synthetic and semi-real datasets confirm its practical effectiveness. The model is applicable in a wide range of digital platforms, including decision support systems, DevOps, logistics, monitoring, and incident management, especially where adaptability and transparency are critical under uncertainty and dynamic change.

Texto integral

Acesso é fechado

Sobre autores

Stepan Trushin

MIREA – Russian Technological University

Autor responsável pela correspondência
Email: trushin@mirea.ru
ORCID ID: 0009-0004-2507-4732
Código SPIN: 3591-2961

senior lecturer, Department of Applied Mathematics

Rússia, Moscow

Bibliografia

  1. Makarov O.Yu., Tsvetkov V.V. Methods of multicriteria assessment. Bulletin of the Voronezh State Technical University. 2009. Vol. 5. No. 11. Pp. 133–135. (In Rus.). EDN: KWXSBZ.
  2. Usin R.U., Patlasov O.Yu. A hybrid model for evaluating the investment attractiveness of companies using fuzzy multi-criteria methods. Journal of Siberian Federal University. Humanities and Social Sciences. 2024. Vol. 17. No. 12. Pp. 2470–2480. EDN: OPOING.
  3. Chakraborty S. TOPSIS and modified TOPSIS: A comparative analysis. Decision Analytics Journal. 2022. Vol. 2. P. 100021. doi: 10.1016/j.dajour.2021.100021. EDN: CHBXAI.
  4. Febrio A., Rachmatullah Sh. Aplikasi pemberian kredit menggunakan metode technique for order preference by similarity to ideal solution (TOPSIS). Insand Comtech: Information Science and Computer Technology Journal. 2022. Vol. 6. No. 1. doi: 10.53712/jic.v6i1.1668. EDN: QYEEHN.
  5. Sekulovic D.J., Jakovljevic G.L. Landfill site selection using GIS technology and the analytic hierarchy process. Military Technical Courier. 2016. Vol. 64. No. 3. Pp. 769–783. doi: 10.5937/vojtehg64-9578. EDN: WBBXVL.
  6. Kirana A.T., Putri E.P. Supplier selection analysis of metallic box using fuzzy Analytic Hierarchy Process (AHP). In: Physics and mechanics of new materials and their applications. International Conference (Surabaya, Oktober 3–8, 2023). Rostov-on-Don; Taganrog: Southern Federal University, 2023. Pp. 50–51. EDN: GVBGMX.
  7. Sharma D., Sridhar S., Claudio D. Comparison of AHP-TOPSIS and AHP-AHP methods in multi-criteria decision-making problems. International Journal of Industrial and Systems Engineering. 2020. Vol. 34. No. 2. P. 203. doi: 10.1504/ijise.2020.105291. EDN: MXZJYU.
  8. Smolentseva T.E., Kalach A.V., Trushin S.M. Improvement of the algorithm for managing the sorting of input documentation in the electronic document management system. Bulletin of the Voronezh Institute of the Federal Penitentiary Service of Russia. 2022. No. 4. Pp. 167–176. (In Rus.). EDN: DIKAOV.
  9. Rasskazova V.A. A decompositional approach to the task of distributive type planning with constraint priorities. In: Industrial Programming – 2024. Collection of reports of the international scientific and practical conference (Moscow, April 4–5, 2024). Moscow: MIREA – Russian Technological University, 2024. Pp. 60–62. EDN: LILCFK.
  10. Lokutsievsky V.O. On one recurrent formula (for the 200th anniversary of Arthur Cayley). Mathematics for Schoolchildren. 2021. No. 2. Pp. 30–32. (In Rus.). EDN: FNTPSJ.
  11. Al Afare H. Pearson and Spearman correlation coefficient for finding the correlation of the r-wave and the RR-amplitude. In: Student science as a resource of innovative development potential. Materials and reports of VI International Student Scientific Conference (Voronezh, May 17, 2017). L.P. Zemskova (ed.). Voronezh: Voronezh State University, 2018. Pp. 171–174. EDN: SLFZJB.
  12. Pudova N.V., Nikitin V.V. Analysis of the values of Spearman's rank correlation coefficient. Economic Analysis: Theory and Practice. 2004. No. 3 (18). Pp. 52–56. (In Rus.). EDN: HYSOKB.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Robustness of models to missing data

Baixar (232KB)
3. Fig. 2. Iterative weight adaptation scheme

Baixar (255KB)
4. Fig. 3. Dependence of accuracy on the proportion of missing data

Baixar (264KB)

Declaração de direitos autorais © Yur-VAK, 2025

Link à descrição da licença: https://www.urvak.ru/contacts/