Improving time series forecasting by applying the sliding window approach

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Our primary research involves forecasting the IT job market, where we study trends, residuals, and seasonalities. In this study, we focus on the impact of the sliding window technique on forecasting models. The sliding window approach in the machine learning process is aimed at enhancing the accuracy of the forecasting models. It involves partitioning the continuous time series into subsets of consecutive and overlapping periods, which enables the models to track temporal characteristics effectively. The experiment is carried out on various algorithms and integrated with the sliding window. The technique allows flexibility for models to adapt to changes in the data dynamics, which greatly reduces the errors in forecasting. The study shows that sliding window methods are quite useful for building dependable and adaptive forecasting models. LSTM, ARIMA, SARIMA, and Holt’s Model were used in this experiment with a dataset of 1 048 576 job rows with job-related information. Metrics such as MSE, RMSE, and MAE were used to test the models. LSTM was found to be the most efficient because of its capability to learn complicated patterns and long-term dependencies, and showed model improvement of 0.248 on MAE, 2.649 on MSE, and 0.162 on RMSE when the sliding window was applied.

全文:

受限制的访问

作者简介

Rebeccah Ndungi

St. Petersburg State University

编辑信件的主要联系方式.
Email: Rebeccahndungi94@gmail.com
ORCID iD: 0000-0002-0389-9758
Scopus 作者 ID: 58106191000
Researcher ID: rid66654

postgraduate student, Faculty of Mathematics and Computer Science

俄罗斯联邦, Saint Petersburg

Ivan Blekanov

St. Petersburg State University

Email: I.blekanov@spbu.ru
ORCID iD: 0000-0002-7305-1429
SPIN 代码: 7473-1900
Scopus 作者 ID: 56149559700
Researcher ID: G-8844-2015

Cand. Sci. (Eng.), Associate Professor; Head, Department of Programming Technology

俄罗斯联邦, Saint Petersburg

参考

  1. Alsharef A., Aggarwal K., Garg S. et al. Review of ML and AutoML solutions to forecast time-series data. Archives of Computational Methods in Engineering. 2022. Vol. 29. No. 7. Pp. 5297–5311. doi: 10.1007/S11831-022-09765-0/METRICS.
  2. Fatima S.S.W., Rahimi A. A Review of time-series forecasting algorithms for industrial manufacturing systems. Machines. 2024. Vol. 12. No. 6. P. 380. doi: 10.3390/MACHINES12060380.
  3. Itzhak N., Jaroszewicz S., Moskovitch R. Temporal ensemble of multiple patterns’ instances for continuous prediction of events. Mach. Learn. 2025. Vol. 114. No. 5. Pp. 1–42. doi: 10.1007/S10994-025-06756-7/FIGURES/16.
  4. Christensen H.B., Hail L., Leuz C. Mandatory CSR and sustainability reporting: Economic analysis and literature review. Review of Accounting Studies. 2021. Vol. 26. No. 3. Pp. 1176–1248. doi: 10.1007/S11142-021-09609-5.
  5. Kontopoulou V.I., Panagopoulos A.D., Kakkos I., Matsopoulos G.K. A review of ARIMA vs. machine learning approaches for time series forecasting in data driven networks. Future Internet. 2023. Vol. 15. No. 8. P. 255. doi: 10.3390/FI15080255.
  6. Forecasting labor and skill demand by sector and occupation. In 2 vols. Vol. 1: Case studies and guidance. URL: https://documents.worldbank.org/en/publication/documents-reports/documentdetail/251591531754581450/case-studies-and-guidance (data of accesses: 19.04.2025).
  7. Yurtsever M. Unemployment rate forecasting: LSTM-GRU hybrid approach. J. Labour. Mark. Res. 2023. Vol. 57. No. 1. Pp. 1–9. doi: 10.1186/S12651-023-00345-8/FIGURES/5.
  8. Vorobev A.V., Kudinov V.A. The importance of forecasting in industrial enterprise management using machine learning. Scientific and Technical Information Processing. 2022. Vol. 49. No. 5. Pp. 393–398. doi: 10.3103/S0147688222050173.
  9. Hewamalage H., Ackermann K., Bergmeir C. Forecast evaluation for data scientists: Common pitfalls and best practices. Data Min Knowl Discov. 2023. Vol. 37. No. 2. Pp. 788–832. doi: 10.1007/S10618-022-00894-5/FIGURES/14.
  10. Lukats D., Zielinski O., Hahn A., Stahl F. A benchmark and survey of fully unsupervised concept drift detectors on real-world data streams. Int. J. Data Sci. Anal. 2024. Vol. 19. No. 1. Pp. 1–31. doi: 10.1007/S41060-024-00620-Y/FIGURES/13.
  11. Zhang J., Zeng Y., Starly B. Recurrent neural networks with long-term temporal dependencies in machine tool wear diagnosis and prognosis. SN Appl. Sci. 2021. Vol. 3. No. 4. Pp. 1–13.. doi: 10.1007/S42452-021-04427-5/FIGURES/7.
  12. Hyndman R.J., Khandakar Y. Automatic time series forecasting: The forecast package for R. J. Stat. Softw. 2008. Vol. 27. No. 3. Pp. 1–22. doi: 10.18637/JSS.V027.I03.
  13. Forecasting: Principles and practice. 3rd ed. Accessed: Nov. 14, 2024. URL: https://otexts.com/fpp3/ (data of accesses: 14.11.2024).
  14. Fokianos K., Fried R. Interventions in log-linear Poisson autoregression. Statistical Modelling. 2012. Vol. 12. No. 4. Pp. 299–322. doi: 10.1177/1471082X1201200401.
  15. Zhang G., Patuwo B.E., Hu M.Y. Forecasting with artificial neural networks: The state of the art. Int. J. Forecast. 1998. Vol. 14. No. 1. Pp. 35–62. doi: 10.1016/S0169-2070(97)00044-7.
  16. Vafaeipour M., Rahbari O., Rosen M.A. et al. Application of sliding window technique for prediction of wind velocity time series. International Journal of Energy and Environmental Engineering. 2014. Vol. 5. No. 2–3. Pp. 1–7. doi: 10.1007/S40095-014-0105-5/FIGURES/7.
  17. Chen Y., Fan X., Huang R. et al. Choose an item. Artificial intelligence/machine learning technology in power system applications. 2024. URL: www.osti.gov (data of accesses: 19.04.2025).
  18. Bressane A., Garcia A.J. da S., de Castro M.V. et al. Fuzzy machine learning applications in environmental engineering: Does the ability to deal with uncertainty matter? Sustainability. 2024. Vol. 16. No. 11. P. 4525. doi: 10.3390/SU16114525.
  19. Wu J.M.T., Li Z., Herencsar N. et al. A graph-based CNN-LSTM stock price prediction algorithm with leading indicators. Multimed. Syst. 2023. Vol. 29. No. 3. Pp. 1751–1770. doi: 10.1007/S00530-021-00758-W/TABLES/15.
  20. Tao Z., Xu Q., Liu X., Liu J. An integrated approach implementing sliding window and DTW distance for time series forecasting tasks. Applied Intelligence. 2023. Vol. 53. No. 17. Pp. 20614–20625. doi: 10.1007/S10489-023-04590-9/METRICS.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. The architectural pipeline

下载 (80KB)
3. Fig. 2. Trend (a), seasonality (b), residuals (c)

下载 (388KB)

版权所有 © Yur-VAK, 2025

许可 URL: https://www.urvak.ru/contacts/