Persistent viral shedding of SARS-CoV-2 in pathogenesis of Long-COVID-19

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The term «Long-COVID-19» refers to a condition when patients with COVID-19 suffer from long-term symptoms lasting more than 28 days from the onset of the disease. A number of mechanisms influencing the development of Long-COVID-19 are discussing, among which the most controversial is the possibility of long-term persistence of the SARS-CoV-2 virus in the body. The data currently available are insufficient to draw definitive conclusions about the persistence of SARS-CoV-2 in the body and its role in the development of Long-COVID-19, relapses and reinfection. At the same time, it is impossible to deny the importance of this factor as a reason of prolonged relapsing course of infection in some patients, primarily immunocompromised ones. The article presents currently available data on the long-term persistence of SARS-CoV-2 after the end of the acute period of COVID-19, potential risk factors for virus persistence and prolonged recurrent course of the disease

Full Text

Restricted Access

About the authors

Laura Z. Bolieva

North Ossetian State Medical Academy of the Ministry of Healthcare of Russia

Email: bolievalz@mail.ru
Dr. med. habil., professor, head of the Department of pharmacology with clinical pharmacology

Andrey G. Malyavin

A.I. Yevdokimov Moscow State University of Medicine and Dentistry of the Ministry of Healthcare of Russia

Email: maliavin@mail.ru
Dr. med. habil., professor, professor of the Department of phthisiology and pulmonology of the Faculty of general medicine

Anna B. Vyalkova

North Ossetian State Medical Academy of the Ministry of Healthcare of Russia

Email: vialkova.anna@yandex.ru
PhD in Medicine, associate professor of the Department of pharmacology with clinical pharmacology

References

  1. Замахина Е.В., Кладова О.В. Персистенция вирусных инфекций. Детские инфекции. 2009; 8(2): 36-43. [Zamakhina E.V., Kladova O.V. The persistence of respiratory viruses. Detskie infektsii = Children Infections. 2009; 8(2): 36-43 (In Russ.)]. EDN: KVCIIZ.
  2. Антонов П.В., Цинзерлинг В.А. Современное состояние проблемы хронических и медленных нейроинфекций. Архив патологии. 2001; 63(1): 47-51. [Antonov P.V., Tsinzerling V.A. The current state of the problem of chronic and slow neuroinfections. Arkhiv patologii = Archive of Pathology. 2001; 63(1): 47-51 (In Russ.)]. EDN: VZGZCP.
  3. Жукова О.Б., Рязанцева Н.В., Новицкий В.В. Вирусная персистенция: иммунологические и молекулярно-генетические аспекты патогенеза. Бюллетень сибирской медицины. 2003; 2(4): 113-120. [Zhukova O.B., Ryazantseva N.V., Novitsky V.V. Viral persistence: immunologic and molecular-genetic aspects of pathogenesis. Byulleten' sibirskoy meditsiny = Herald of Siberian Medicine. 2003; 2(4): 113-120 (In Russ.)]. EDN: QZFLLL.
  4. Oldstone М.В. Viral persistence. Cell. 1989; 56(4): 517-20. https://dx.doi.org/10.1016/0092-8674(89)90573-4.
  5. Фролов А.Ф. Персистенция вирусов. Механизмы и клинико-эпидемиологические аспекты. Винница: Издательство Винницкого медицинского университета им. Н.И. Пирогова. 1995; 233 с.
  6. Cheng P.K.C., Wong D., Tong L.K.L. et al. Viral shedding patterns of coronavirus in patients with probable severe acute respiratory syndrome. Lancet. 2004; 363(9422): 1699-700. https://dx.doi.org/10.1016/S0140-6736(04)16255-7.
  7. Oh M.-D., Park W.B., Choe P.G. et al. Viral load kinetics of MERS coronavirus infection. N. Engl J. Med. 2016; 375(13): 1303-5. https://dx.doi.org/10.1056/NEJMc1511695.
  8. Zhou F., Yu T., Du R. et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet. 2020; 395(10229): 1054-62. https://dx.doi.org/10.1016/S0140-6736(20)30566-3.
  9. Carmo A., Pereira-Vaz J., Mota V. et al. Clearance and persistence of SARS-CoV-2 RNA in COVID-19 patients. J. Med Virol. 2020; 92(10): 2227-31. https://dx.doi.org/10.1002/jmv.26103.
  10. Wang X., Huang K., Jiang H. et al. Long-term existence of SARS-CoV-2 in COVID-19 patients: Host immunity, viral virulence, and transmissibility. Virologica Sinica. 2020; 35(6): 793-802. https://dx.doi.org/10.1007/s12250-020-00308-0.
  11. Zhou B., She J., Wang Y. et al. Duration of viral shedding of discharged patients with severe COVID-19. Clin Infect Dis. 2020; 71(16): 2240-42. https://dx.doi.org/10.1093/cid/ciaa451.
  12. Vibholm L.K., Nielsen S.S.F., Pahus M.H. et al. SARS-CoV-2 persistence is associated with antigen-specific CD8 T-cell responses. EBioMedicine. 2021; 64: 103230. https://dx.doi.org/10.1016/j.ebiom.2021.103230.
  13. Salmon-Ceron D., Slama D., De Broucker T. et al. Clinical virological and imaging profile in patients with prolonged forms of COVID-19: A cross-sectional study. J. Infect. 2021; 82(2): e1-e4. https://dx.doi.org/10.1016/j.jinf.2020.12.002.
  14. Morone G., Palomba A., Iosa M. et al. Incidence and persistence of viral shedding in COVID-19 post-acute patients with negativized pharyngeal swab: A systematic review. Front Med (Lausanne). 2020; 7: 562-70. https://dx.doi.org/10.3389/fmed.2020.00562.
  15. Van Doorn A.S., Meijer B., Frampton C.M.A. et al. Systematic review with meta-analysis: SARS-CoV-2 stool testing and the potential for faecal-oral transmission. Aliment Pharmacol Ther. 2020; 52(8): 1276-88. https://dx.doi.org/10.1111/apt.16036.
  16. Park S.K., Lee C.W., Park D.I. et al. Detection of SARS-CoV-2 in fecal samples from patients with asymptomatic and mild COVID-19 in Korea. Clin Gastroenterol Hepatol. 2021; 19(7): 1387-94. https://dx.doi.org/10.3346/jkms.2021.36.e301.
  17. Wu Y., Guo C., Tang L. et al. Prolonged presence of SARS-CoV-2 viral RNA in faecal samples. Lancet Gastroenterol. Hepatol. 2020; 5(5): 434-35. https://dx.doi.org/10.1016/S2468-1253(20)30083-2.
  18. Wolfel R., Corman V.M., Guggemos W. et al. Virological assessment of hospitalized patients with COVID-2019. Nature. 2020; 581(7809): 465-69. https://dx.doi.org/10.1038/s41586-020-2196-x.
  19. Bullard J., Dust K., Funk D. et al. Predicting infectious SARS-CoV-2 from diagnostic samples. Clin Infect Dis. 2020; 71(10): 2663-66. https://dx.doi.org/10.1093/cid/ciaa638.
  20. van Kampen J.J.A., van de Vijver D., Fraaij P.L.A. et al. Duration and key determinants of infectious virus shedding in hospitalized patients with coronavirus disease-2019 (COVID-19). Nat Commun. 2021; 12(1): 267-72. https://dx.doi.org/10.1038/s41467-020-20568-4.
  21. Liu W.D. Chang S.-Y., Wang J.-T. et al. Prolonged virus shedding even after seroconversion in a patient with COVID-19. J. Infect. 2020; 81(2): 318-56. https://dx.doi.org/10.1016/j.jinf.2020.03.063.
  22. Laferl H., Kelani H., Seitz T. et al. An approach to lifting self-isolation for health care workers with prolonged shedding of SARS-CoV-2 RNA. Infection. 2021; 49(1): 95-101. https://dx.doi.org/10.1007/s15010-020-01530-4.
  23. Sohn Y., Jeong S.J., Chung W.S. Assessing viral shedding and infectivity of asymptomatic or mildly symptomatic patients with COVID-19 in a later phase. J. Clin Med. 2020; 9(9): 2924-33. https://dx.doi.org/10.3390/jcm9092924.
  24. Jeong H.W., Kim S.M., Kim H.S. et al. Viable SARS-CoV-2 in various specimens from COVID-19 patients. Clin Microbiol Infect. 2020; 26(11): 1520-24. https://dx.doi.org/10.1016/j.cmi.2020.07.020.
  25. Zheng S., Fan J., Yu F. et al. Viral load dynamics and disease severity in patients infected with SARS-CoV-2 in Zhejiang province, China, January-March 2020: Retrospective cohort study. BMJ. 2020; 369: m1443. https://dx.doi.org/10.1136/bmj.m1443.
  26. Fang Z., Zhang Y., Hang C. et al. Comparisons of viral shedding time of SARS-CoV-2 of different samples in ICU and non-ICU patients. J. Infect. 2020; 81(1): 147-78. https://dx.doi.org/10.1016/j.jinf.2020.03.013.
  27. Liu Y., Yan L.-M., Wan L. et al. Viral dynamics in mild and severe cases of COVID-19. Lancet Infect Dis. 2020; 20(6): 656-57. https://dx.doi.org/10.1016/S1473-3099(20)30232-2
  28. Marks M., Millat-Martinez P., Ouchi D. et al. Transmission of COVID-19 in 282 clusters in Catalonia, Spain: A cohort study. Lancet Infect Dis. 2021; 21(5): 629-36. https://dx.doi.org/10.1016/S1473-3099(20)30985-3.
  29. Xu K., Chen Y., Yuan J. et al. Factors associated with prolonged viral RNA shedding in patients with coronavirus disease 2019 (COVID-19). Clin Infect Dis. 2020; 71(15): 799-806. https://dx.doi.org/10.1093/cid/ciaa351.
  30. Fung M., Babik J.M. COVID-19 in immunocompromised hosts: What we know so far. Clin Infect Dis. 2021; 72(2): 340-50. https://dx.doi.org/10.1093/cid/ciaa863.
  31. Cevik M., Tate M., Lloyd O. et al. SARS-CoV-2, SARS-CoV, and MERS-CoV viral load dynamics, duration of viral shedding, and infectiousness: A systematic review and meta-analysis. Lancet Microbe. 2021; 2(1): e13-e22. https://dx.doi.org/10.1016/S2666-5247(20)30172-5.
  32. Choi B., Choudhary M.C., Regan J. et al. Persistence and evolution of SARS-CoV-2 in an immunocompromised host. N. Engl J. Med. 2020; 383(23): 2291-93. https://dx.doi.org/10.1056/NEJMc2031364.
  33. Baang J.H., Smith C., Mirabelli C. et al. Prolonged severe acute respiratory syndrome coronavirus 2 replication in an immunocompromised patient. J. Infect Dis. 2021; 223(1): 23-27. https://dx.doi.org/10.1093/infdis/jiaa666.
  34. Aydillo T., Gonzalez-Reiche A.S., Aslam S. et al. Shedding of viable SARS-CoV-2 after immunosuppressive therapy for cancer. N. Engl J. Med. 2020; 383(26): 2586-88. https://dx.doi.org/10.1056/NEJMc2031670.
  35. Helleberg M., Niemann C.U., Moestrup K.S. et al. Persistent COVID-19 in an Immunocompromised patient temporarily responsive to two courses of remdesivir therapy. J. Infect Dis. 2020; 222(7): 1103-7. https://dx.doi.org/10.1093/infdis/jiaa446.
  36. Avanzato V.A., Matson M.J., Seifert S.N. et al. Case Study: Prolonged Infectious SARS-CoV-2 Shedding from an asymptomatic immunocompromised individual with cancer. Cell. 2020; 183(7): 1901-1912.e9. https://dx.doi.org/10.1016/j.cell.2020.10.049.
  37. Sepulcri C., Dentone C., Mikulska M. et al. The longest persistence of viable SARS-CoV-2 with recurrence of viremia and relapsing symptomatic COVID-19 in an immunocompromised patient - A case study. Open Forum Infect Dis. 2021; 8(11): ofab217. https://dx.doi.org/10.1093/ofid/ofab217.
  38. Beigel J.H., Tomashek K.M., Dodd L.E. et al. Remdesivir for the treatment of Covid-19 - Final report. N. Engl J. Med. 2020; 383(19): 1813-26. https://dx.doi.org/10.1056/NEJMoa2007764.
  39. Kang H., Wang Y., Tong Z., Liu X. Retest positive for SARS-CoV-2 RNA of «recovered» patients with COVID-19: Persistence, sampling issues, or re-infection? J. Med Virol. 2020; 92(11); 2263-65. https://dx.doi.org/10.1002/jmv.26114.
  40. Duggan N.M., Ludy S.M., Shannon B.C. et al. Is novel coronavirus 2019 reinfection possible? Interpreting dynamic SARS-CoV-2 test results through a case report. Am J. Emerg Med. 2021; 39: 256.e1-256.e3. https://dx.doi.org/10.1016/j.ajem.2020.06.079.
  41. Lafaie L., Celarier T., Goethals L. et al. Recurrence or relapse of COVID-19 in older patients: A description of three cases. J. Am Geriatr Soc. 2020; 68(10): 2179-83. https://dx.doi.org/10.1111/jgs.16728.
  42. Torres D.D.A., Ribeiro L.D.C.B., Riello A.P.D.F.L. et al. Reinfection of COVID-19 after 3 months with a distinct and more aggressive clinical presentation: Case report. J. Med Virol. 2021; 93(4): 1857-59. https://dx.doi.org/10.1002/jmv.26637.
  43. Tillett R.L., Sevinsky J.R., Hartley P.D. et al. Genomic evidence for reinfection with SARS-CoV-2: A case study. Lancet Infect Dis. 2021; 21(1): 52-58. https://dx.doi.org/10.1016/S1473-3099(20)30764-7.
  44. Goldman J.D., Wang K., Roltgen K. et al. Reinfection with SARS-CoV-2 and failure of humoral immunity: A case report. medRxiv. 2020. https://dx.doi.org/10.1101/2020.09.22.20192443. Preprint.
  45. Lu J., Peng J., Xiong Q. et al. Clinical, immunological and virological characterization of COVID-19 patients that test re-positive for SARS-CoV-2 by RT-PCR. EBioMedicine. 2020; 59: 102960. https://dx.doi.org/10.1016/j.ebiom.2020.102960.
  46. Elrashdy F., AlJaddawi A.A., Redwan E.M. et al. On the potential role of exosomes in the COVID-19 reinfection/reactivation opportunity. J. Biomol Struct Dyn. 2021; 39(15): 5831-42. https://dx.doi.org/10.1080/07391102.2020.1790426.
  47. Urbanelli L., Buratta S., Tancini B. et al. The role of extracellular vesicles in viral infection and transmission. Vaccines. 2019; 7(3): 102. https://dx.doi.org/10.3390/vaccines7030102.
  48. Lancman G., Mascarenhas J., Bar-Natan M. Severe COVID-19 virus reactivation following treatment for B. cell acute lymphoblastic leukemia. J. Hematol Oncol. 2020; 13(1): 131. https://dx.doi.org/10.1186/s13045-020-00968-1.
  49. Балыкова Л.А., Грановская М.В., Заславская К.Я. с соавт. Новые возможности направленной противовирусной терапии COVID-19: результаты многоцентрового клинического исследования эффективности и безопасности применения препарата Арепливир. Инфекционные болезни: новости, мнения, обучение. 2020; 9(3): 16-29. [Balykova L.A., Granovskaya M.V., Zaslavskaya K.Yu. et al. New possibilities for targeted antiviral therapy for COVID-19. Results of a multicenter clinical study of the efficacy and safety of using the drug Areplivir. Infektsionnyye bolezni: novosti, mneniya, obucheniye = Infectious Diseases: News, Opinions, Training. 2020; 9(3): 16-29 (In Russ.)]. https://dx.doi.org/10.33029/2305-3496-2020-9-3-16-29. EDN: DMSBFC.
  50. Краткий отчет о результатах клинического исследования «Открытое рандомизированное многоцентровое сравнительное исследование эффективности и безопасности препарата АРЕПЛИВИР, таблетки, покрытые пленочной оболочкой (ООО «ПРОМОМЕД РУС», Россия) у пациентов, госпитализированных с COVID-19». Доступ: https://promomed.ru/upload/iblock/9d2/482de2bwschpke9cn1cmxh4f96q9dqr6/АРЕПЛИВИР_краткий%20отчет%20КИ.pdf (дата обращения - 01.11.2022).
  51. Mali K.R., Eerike M., Raj G.M. et al. Efficacy and safety of Molnupiravir in COVID-19 patients: A systematic review. Ir J. Med Sci. 2022; 1-14. doi: 10.1007/s11845-022-03139-y
  52. Малявин А.Г., Крихели Н.И., Рогова И.В. с соавт. Терапия пациентов с COVID-19: результаты оценки эффективности и безопасности включения препарата Ингавирин® в схему рекомендованной стандартной терапии в реальной клинической практике. Терапия. 2021; 7(5): 22-26. [Malyavin A.G., Krikheli N.I., Rogova I.V. et al. COVID-19 therapy: the efficacy and safety of combination of Ingavirin® with standard recommended treatment in real clinical practice. Terapiya = Therapy. 2021; 7(5): 22-26 (In Russ.)]. https://dx.doi.org/10.18565/therapy.2021.5.22-32. EDN: LZUYSM.
  53. Novak P., Mukerji S.S., Alabsi H.S. et al. Multisystem involvement in post-acute sequelae of coronavirus disease 19. Ann Neurol. 2022; 91(3): 367-79. https://dx.doi.org/10.1002/ana.26286.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies