Persistent viral shedding of SARS-CoV-2 in pathogenesis of Long-COVID-19

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

The term «Long-COVID-19» refers to a condition when patients with COVID-19 suffer from long-term symptoms lasting more than 28 days from the onset of the disease. A number of mechanisms influencing the development of Long-COVID-19 are discussing, among which the most controversial is the possibility of long-term persistence of the SARS-CoV-2 virus in the body. The data currently available are insufficient to draw definitive conclusions about the persistence of SARS-CoV-2 in the body and its role in the development of Long-COVID-19, relapses and reinfection. At the same time, it is impossible to deny the importance of this factor as a reason of prolonged relapsing course of infection in some patients, primarily immunocompromised ones. The article presents currently available data on the long-term persistence of SARS-CoV-2 after the end of the acute period of COVID-19, potential risk factors for virus persistence and prolonged recurrent course of the disease

全文:

受限制的访问

作者简介

Laura Bolieva

North Ossetian State Medical Academy of the Ministry of Healthcare of Russia

Email: bolievalz@mail.ru
Dr. med. habil., professor, head of the Department of pharmacology with clinical pharmacology

Andrey Malyavin

A.I. Yevdokimov Moscow State University of Medicine and Dentistry of the Ministry of Healthcare of Russia

Email: maliavin@mail.ru
Dr. med. habil., professor, professor of the Department of phthisiology and pulmonology of the Faculty of general medicine

Anna Vyalkova

North Ossetian State Medical Academy of the Ministry of Healthcare of Russia

Email: vialkova.anna@yandex.ru
PhD in Medicine, associate professor of the Department of pharmacology with clinical pharmacology

参考

  1. Замахина Е.В., Кладова О.В. Персистенция вирусных инфекций. Детские инфекции. 2009; 8(2): 36-43. [Zamakhina E.V., Kladova O.V. The persistence of respiratory viruses. Detskie infektsii = Children Infections. 2009; 8(2): 36-43 (In Russ.)]. EDN: KVCIIZ.
  2. Антонов П.В., Цинзерлинг В.А. Современное состояние проблемы хронических и медленных нейроинфекций. Архив патологии. 2001; 63(1): 47-51. [Antonov P.V., Tsinzerling V.A. The current state of the problem of chronic and slow neuroinfections. Arkhiv patologii = Archive of Pathology. 2001; 63(1): 47-51 (In Russ.)]. EDN: VZGZCP.
  3. Жукова О.Б., Рязанцева Н.В., Новицкий В.В. Вирусная персистенция: иммунологические и молекулярно-генетические аспекты патогенеза. Бюллетень сибирской медицины. 2003; 2(4): 113-120. [Zhukova O.B., Ryazantseva N.V., Novitsky V.V. Viral persistence: immunologic and molecular-genetic aspects of pathogenesis. Byulleten' sibirskoy meditsiny = Herald of Siberian Medicine. 2003; 2(4): 113-120 (In Russ.)]. EDN: QZFLLL.
  4. Oldstone М.В. Viral persistence. Cell. 1989; 56(4): 517-20. https://dx.doi.org/10.1016/0092-8674(89)90573-4.
  5. Фролов А.Ф. Персистенция вирусов. Механизмы и клинико-эпидемиологические аспекты. Винница: Издательство Винницкого медицинского университета им. Н.И. Пирогова. 1995; 233 с.
  6. Cheng P.K.C., Wong D., Tong L.K.L. et al. Viral shedding patterns of coronavirus in patients with probable severe acute respiratory syndrome. Lancet. 2004; 363(9422): 1699-700. https://dx.doi.org/10.1016/S0140-6736(04)16255-7.
  7. Oh M.-D., Park W.B., Choe P.G. et al. Viral load kinetics of MERS coronavirus infection. N. Engl J. Med. 2016; 375(13): 1303-5. https://dx.doi.org/10.1056/NEJMc1511695.
  8. Zhou F., Yu T., Du R. et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet. 2020; 395(10229): 1054-62. https://dx.doi.org/10.1016/S0140-6736(20)30566-3.
  9. Carmo A., Pereira-Vaz J., Mota V. et al. Clearance and persistence of SARS-CoV-2 RNA in COVID-19 patients. J. Med Virol. 2020; 92(10): 2227-31. https://dx.doi.org/10.1002/jmv.26103.
  10. Wang X., Huang K., Jiang H. et al. Long-term existence of SARS-CoV-2 in COVID-19 patients: Host immunity, viral virulence, and transmissibility. Virologica Sinica. 2020; 35(6): 793-802. https://dx.doi.org/10.1007/s12250-020-00308-0.
  11. Zhou B., She J., Wang Y. et al. Duration of viral shedding of discharged patients with severe COVID-19. Clin Infect Dis. 2020; 71(16): 2240-42. https://dx.doi.org/10.1093/cid/ciaa451.
  12. Vibholm L.K., Nielsen S.S.F., Pahus M.H. et al. SARS-CoV-2 persistence is associated with antigen-specific CD8 T-cell responses. EBioMedicine. 2021; 64: 103230. https://dx.doi.org/10.1016/j.ebiom.2021.103230.
  13. Salmon-Ceron D., Slama D., De Broucker T. et al. Clinical virological and imaging profile in patients with prolonged forms of COVID-19: A cross-sectional study. J. Infect. 2021; 82(2): e1-e4. https://dx.doi.org/10.1016/j.jinf.2020.12.002.
  14. Morone G., Palomba A., Iosa M. et al. Incidence and persistence of viral shedding in COVID-19 post-acute patients with negativized pharyngeal swab: A systematic review. Front Med (Lausanne). 2020; 7: 562-70. https://dx.doi.org/10.3389/fmed.2020.00562.
  15. Van Doorn A.S., Meijer B., Frampton C.M.A. et al. Systematic review with meta-analysis: SARS-CoV-2 stool testing and the potential for faecal-oral transmission. Aliment Pharmacol Ther. 2020; 52(8): 1276-88. https://dx.doi.org/10.1111/apt.16036.
  16. Park S.K., Lee C.W., Park D.I. et al. Detection of SARS-CoV-2 in fecal samples from patients with asymptomatic and mild COVID-19 in Korea. Clin Gastroenterol Hepatol. 2021; 19(7): 1387-94. https://dx.doi.org/10.3346/jkms.2021.36.e301.
  17. Wu Y., Guo C., Tang L. et al. Prolonged presence of SARS-CoV-2 viral RNA in faecal samples. Lancet Gastroenterol. Hepatol. 2020; 5(5): 434-35. https://dx.doi.org/10.1016/S2468-1253(20)30083-2.
  18. Wolfel R., Corman V.M., Guggemos W. et al. Virological assessment of hospitalized patients with COVID-2019. Nature. 2020; 581(7809): 465-69. https://dx.doi.org/10.1038/s41586-020-2196-x.
  19. Bullard J., Dust K., Funk D. et al. Predicting infectious SARS-CoV-2 from diagnostic samples. Clin Infect Dis. 2020; 71(10): 2663-66. https://dx.doi.org/10.1093/cid/ciaa638.
  20. van Kampen J.J.A., van de Vijver D., Fraaij P.L.A. et al. Duration and key determinants of infectious virus shedding in hospitalized patients with coronavirus disease-2019 (COVID-19). Nat Commun. 2021; 12(1): 267-72. https://dx.doi.org/10.1038/s41467-020-20568-4.
  21. Liu W.D. Chang S.-Y., Wang J.-T. et al. Prolonged virus shedding even after seroconversion in a patient with COVID-19. J. Infect. 2020; 81(2): 318-56. https://dx.doi.org/10.1016/j.jinf.2020.03.063.
  22. Laferl H., Kelani H., Seitz T. et al. An approach to lifting self-isolation for health care workers with prolonged shedding of SARS-CoV-2 RNA. Infection. 2021; 49(1): 95-101. https://dx.doi.org/10.1007/s15010-020-01530-4.
  23. Sohn Y., Jeong S.J., Chung W.S. Assessing viral shedding and infectivity of asymptomatic or mildly symptomatic patients with COVID-19 in a later phase. J. Clin Med. 2020; 9(9): 2924-33. https://dx.doi.org/10.3390/jcm9092924.
  24. Jeong H.W., Kim S.M., Kim H.S. et al. Viable SARS-CoV-2 in various specimens from COVID-19 patients. Clin Microbiol Infect. 2020; 26(11): 1520-24. https://dx.doi.org/10.1016/j.cmi.2020.07.020.
  25. Zheng S., Fan J., Yu F. et al. Viral load dynamics and disease severity in patients infected with SARS-CoV-2 in Zhejiang province, China, January-March 2020: Retrospective cohort study. BMJ. 2020; 369: m1443. https://dx.doi.org/10.1136/bmj.m1443.
  26. Fang Z., Zhang Y., Hang C. et al. Comparisons of viral shedding time of SARS-CoV-2 of different samples in ICU and non-ICU patients. J. Infect. 2020; 81(1): 147-78. https://dx.doi.org/10.1016/j.jinf.2020.03.013.
  27. Liu Y., Yan L.-M., Wan L. et al. Viral dynamics in mild and severe cases of COVID-19. Lancet Infect Dis. 2020; 20(6): 656-57. https://dx.doi.org/10.1016/S1473-3099(20)30232-2
  28. Marks M., Millat-Martinez P., Ouchi D. et al. Transmission of COVID-19 in 282 clusters in Catalonia, Spain: A cohort study. Lancet Infect Dis. 2021; 21(5): 629-36. https://dx.doi.org/10.1016/S1473-3099(20)30985-3.
  29. Xu K., Chen Y., Yuan J. et al. Factors associated with prolonged viral RNA shedding in patients with coronavirus disease 2019 (COVID-19). Clin Infect Dis. 2020; 71(15): 799-806. https://dx.doi.org/10.1093/cid/ciaa351.
  30. Fung M., Babik J.M. COVID-19 in immunocompromised hosts: What we know so far. Clin Infect Dis. 2021; 72(2): 340-50. https://dx.doi.org/10.1093/cid/ciaa863.
  31. Cevik M., Tate M., Lloyd O. et al. SARS-CoV-2, SARS-CoV, and MERS-CoV viral load dynamics, duration of viral shedding, and infectiousness: A systematic review and meta-analysis. Lancet Microbe. 2021; 2(1): e13-e22. https://dx.doi.org/10.1016/S2666-5247(20)30172-5.
  32. Choi B., Choudhary M.C., Regan J. et al. Persistence and evolution of SARS-CoV-2 in an immunocompromised host. N. Engl J. Med. 2020; 383(23): 2291-93. https://dx.doi.org/10.1056/NEJMc2031364.
  33. Baang J.H., Smith C., Mirabelli C. et al. Prolonged severe acute respiratory syndrome coronavirus 2 replication in an immunocompromised patient. J. Infect Dis. 2021; 223(1): 23-27. https://dx.doi.org/10.1093/infdis/jiaa666.
  34. Aydillo T., Gonzalez-Reiche A.S., Aslam S. et al. Shedding of viable SARS-CoV-2 after immunosuppressive therapy for cancer. N. Engl J. Med. 2020; 383(26): 2586-88. https://dx.doi.org/10.1056/NEJMc2031670.
  35. Helleberg M., Niemann C.U., Moestrup K.S. et al. Persistent COVID-19 in an Immunocompromised patient temporarily responsive to two courses of remdesivir therapy. J. Infect Dis. 2020; 222(7): 1103-7. https://dx.doi.org/10.1093/infdis/jiaa446.
  36. Avanzato V.A., Matson M.J., Seifert S.N. et al. Case Study: Prolonged Infectious SARS-CoV-2 Shedding from an asymptomatic immunocompromised individual with cancer. Cell. 2020; 183(7): 1901-1912.e9. https://dx.doi.org/10.1016/j.cell.2020.10.049.
  37. Sepulcri C., Dentone C., Mikulska M. et al. The longest persistence of viable SARS-CoV-2 with recurrence of viremia and relapsing symptomatic COVID-19 in an immunocompromised patient - A case study. Open Forum Infect Dis. 2021; 8(11): ofab217. https://dx.doi.org/10.1093/ofid/ofab217.
  38. Beigel J.H., Tomashek K.M., Dodd L.E. et al. Remdesivir for the treatment of Covid-19 - Final report. N. Engl J. Med. 2020; 383(19): 1813-26. https://dx.doi.org/10.1056/NEJMoa2007764.
  39. Kang H., Wang Y., Tong Z., Liu X. Retest positive for SARS-CoV-2 RNA of «recovered» patients with COVID-19: Persistence, sampling issues, or re-infection? J. Med Virol. 2020; 92(11); 2263-65. https://dx.doi.org/10.1002/jmv.26114.
  40. Duggan N.M., Ludy S.M., Shannon B.C. et al. Is novel coronavirus 2019 reinfection possible? Interpreting dynamic SARS-CoV-2 test results through a case report. Am J. Emerg Med. 2021; 39: 256.e1-256.e3. https://dx.doi.org/10.1016/j.ajem.2020.06.079.
  41. Lafaie L., Celarier T., Goethals L. et al. Recurrence or relapse of COVID-19 in older patients: A description of three cases. J. Am Geriatr Soc. 2020; 68(10): 2179-83. https://dx.doi.org/10.1111/jgs.16728.
  42. Torres D.D.A., Ribeiro L.D.C.B., Riello A.P.D.F.L. et al. Reinfection of COVID-19 after 3 months with a distinct and more aggressive clinical presentation: Case report. J. Med Virol. 2021; 93(4): 1857-59. https://dx.doi.org/10.1002/jmv.26637.
  43. Tillett R.L., Sevinsky J.R., Hartley P.D. et al. Genomic evidence for reinfection with SARS-CoV-2: A case study. Lancet Infect Dis. 2021; 21(1): 52-58. https://dx.doi.org/10.1016/S1473-3099(20)30764-7.
  44. Goldman J.D., Wang K., Roltgen K. et al. Reinfection with SARS-CoV-2 and failure of humoral immunity: A case report. medRxiv. 2020. https://dx.doi.org/10.1101/2020.09.22.20192443. Preprint.
  45. Lu J., Peng J., Xiong Q. et al. Clinical, immunological and virological characterization of COVID-19 patients that test re-positive for SARS-CoV-2 by RT-PCR. EBioMedicine. 2020; 59: 102960. https://dx.doi.org/10.1016/j.ebiom.2020.102960.
  46. Elrashdy F., AlJaddawi A.A., Redwan E.M. et al. On the potential role of exosomes in the COVID-19 reinfection/reactivation opportunity. J. Biomol Struct Dyn. 2021; 39(15): 5831-42. https://dx.doi.org/10.1080/07391102.2020.1790426.
  47. Urbanelli L., Buratta S., Tancini B. et al. The role of extracellular vesicles in viral infection and transmission. Vaccines. 2019; 7(3): 102. https://dx.doi.org/10.3390/vaccines7030102.
  48. Lancman G., Mascarenhas J., Bar-Natan M. Severe COVID-19 virus reactivation following treatment for B. cell acute lymphoblastic leukemia. J. Hematol Oncol. 2020; 13(1): 131. https://dx.doi.org/10.1186/s13045-020-00968-1.
  49. Балыкова Л.А., Грановская М.В., Заславская К.Я. с соавт. Новые возможности направленной противовирусной терапии COVID-19: результаты многоцентрового клинического исследования эффективности и безопасности применения препарата Арепливир. Инфекционные болезни: новости, мнения, обучение. 2020; 9(3): 16-29. [Balykova L.A., Granovskaya M.V., Zaslavskaya K.Yu. et al. New possibilities for targeted antiviral therapy for COVID-19. Results of a multicenter clinical study of the efficacy and safety of using the drug Areplivir. Infektsionnyye bolezni: novosti, mneniya, obucheniye = Infectious Diseases: News, Opinions, Training. 2020; 9(3): 16-29 (In Russ.)]. https://dx.doi.org/10.33029/2305-3496-2020-9-3-16-29. EDN: DMSBFC.
  50. Краткий отчет о результатах клинического исследования «Открытое рандомизированное многоцентровое сравнительное исследование эффективности и безопасности препарата АРЕПЛИВИР, таблетки, покрытые пленочной оболочкой (ООО «ПРОМОМЕД РУС», Россия) у пациентов, госпитализированных с COVID-19». Доступ: https://promomed.ru/upload/iblock/9d2/482de2bwschpke9cn1cmxh4f96q9dqr6/АРЕПЛИВИР_краткий%20отчет%20КИ.pdf (дата обращения - 01.11.2022).
  51. Mali K.R., Eerike M., Raj G.M. et al. Efficacy and safety of Molnupiravir in COVID-19 patients: A systematic review. Ir J. Med Sci. 2022; 1-14. doi: 10.1007/s11845-022-03139-y
  52. Малявин А.Г., Крихели Н.И., Рогова И.В. с соавт. Терапия пациентов с COVID-19: результаты оценки эффективности и безопасности включения препарата Ингавирин® в схему рекомендованной стандартной терапии в реальной клинической практике. Терапия. 2021; 7(5): 22-26. [Malyavin A.G., Krikheli N.I., Rogova I.V. et al. COVID-19 therapy: the efficacy and safety of combination of Ingavirin® with standard recommended treatment in real clinical practice. Terapiya = Therapy. 2021; 7(5): 22-26 (In Russ.)]. https://dx.doi.org/10.18565/therapy.2021.5.22-32. EDN: LZUYSM.
  53. Novak P., Mukerji S.S., Alabsi H.S. et al. Multisystem involvement in post-acute sequelae of coronavirus disease 19. Ann Neurol. 2022; 91(3): 367-79. https://dx.doi.org/10.1002/ana.26286.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Bionika Media, 2022
##common.cookie##