ASTHENIC DISORDERS IN THE CONTEXT OF COVID-19 PANDEMIC


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The most common health problems in COVID-19 survivors include post-infectious asthenia, which can persist for more than 100 days after the respiratory symptoms onset, and cognitive impairments. Most post-COVID patients recover not fully and have a wide range of chronic symptoms that manifest themselves within weeks or months of exposure as neurological, cognitive, or psychiatric disorders. Asthenic syndrome, numerous emotional and cognitive disorders after suffering from COVID-19 reduce the quality of life, slow down the process of recovery and patients' returning to initial level of daily activities, which requires careful monitoring of patients for the timely detection and correction of such kind of disorders by means of treatment and rehabilitation measures.

Full Text

Restricted Access

About the authors

Anna N. Bogolepova

N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia; Federal Center for Brain and Neurotechnologies of FMBA of Russia

Email: annabogolepova@yandex.ru
Dr. med. habil., professor of the Department of neurology, neurosurgery and medical genetics 117513, Moscow, 1/10 Ostrovityanova Str.

Nina A. Osinovskaya

Federal Center for Brain and Neurotechnologies of FMBA of Russia

Email: 4246290@mail.ru
researcher at the Department of cognitive impairments 117513, Moscow, 1/10 Ostrovityanova Str.

References

  1. World Health Organization (2020). Coronavirus disease 2019 (COVID-19): Situation report, 55. World Health Organization. URL: https://apps.who.int/iris/handle/10665/331479 (date of access - 01.11.2022).
  2. Hozhabri H., Sparascio F.S., Sohrabi H. et al. The global emergency of novel coronavirus (SARS-CoV-2): An update of the current status and forecasting.Int J Environ Res Public Health. 2020; 17(16): 5648. https://dx.doi.org/10.3390/ijerph17165648.
  3. Yang Y., Peng F., Wang R. et al. The deadly coronaviruses: The 2003 SARS pandemic and the 2020 novel coronavirus epidemic in China. J Autoimmun. 2020; 109: 102434. https://dx.doi.org/10.1016/j.jaut.2020.102434.
  4. Al-Samkari H., Leaf R.K., Dzik W.H. et al. COVID-19 and coagulation: Bleeding and thrombotic manifestations of SARS-CoV-2 infection. Blood. 2020; 136(4): 489-500. https://dx.doi.org/10.1182/blood.2020006520.
  5. Amraei R., Rahimi N. COVID-19, renin-angiotensin system and endothelial dysfunction. Cells. 2020; 9(7): 1652. https://dx.doi.org/10.3390/cells9071652.
  6. Bikdeli B., Madhavan M.V., Jimenez D. et al. COVID-19 and thrombotic or thromboembolic disease: Implications for prevention, antithrombotic therapy, and follow-up: JACC state-of-the-art review. J Am Coll Cardiol. 2020; 75(23): 2950-73. https://dx.doi.org/10.1016/j.jacc.2020.04.031.
  7. Rogers J.P., Chesney E., Oliver D. et al. Psychiatric and neuropsychiatric pre-sentations associated with severe coronavirus infections: A systematic review and meta-analysis with comparison to the COVID-19 pandemic. Lancet Psychiatry. 2020; 7(7): 611-27. https://dx.doi.org/10.1016/S2215-0366(20)30203-0.
  8. Goldberg J.F. Psychiatry's niche role in the COVIDE19 pandemic. J Clin Psychiatry. 2020; 81(3): 20com13363. https://dx.doi.org/10.4088/JCP.20com13363.
  9. Li Y.C., Bai W.Z., Hashikawa T. The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. J Med Virol. 2020; 92(6): 552-55. https://dx.doi.org/10.1002/jmv.25728.
  10. Yao H., Chen J.H., Xu Y.F. Patients with mental health disorders in the COVID-19 epidemic. Lancet Psychiatry. 2020; 7(4): e21. https://dx.doi.org/10.1016/S2215-0366(20)30090-0.
  11. Медведев В.Э., Доготарь О.А. COVID-19 и психическое здоровье: вызовы и первые выводы. Неврология, нейропсихиатрия, психосоматика. 2020; 12(6): 4-10.
  12. Brooks S.K., Webster R.K., Smith L.E. et al. The psychological impact of quarantine and how to reduce it: rapid review of the evidence. The Lancet. 2020; 395(10227): 912-20. https://dx.doi.org/10.1016/S0140-6736(20)30460-8.
  13. Qiu J., Shen B., Zhao M. et al. A nationwide survey of psychological distress among Chinese people in the COVID-19 epidemic: Implications and policy recommendations. Gen Psychiatr. 2020; 33(2): e100213. https://dx.doi.org/10.1136/gpsych-2020-100213 [published correction appears in https://dx.doi.org/10.1136/gpsych-2020-100213corr1].
  14. Figueroa C.A., Aguilera A. The need for a mental health technology revolution in the COVID-19 pandemic. Front Psychiatry. 2020; 11: 523. https://dx.doi.org/10.3389/fpsyt.2020.00523.
  15. Ozamiz-Etxebarria N., Dosil-Santamaria M., Picaza-Gorrochategui M. et al. Stress, anxiety, and depression levels in the initial stage of the COVID-19 outbreak in a population sample in the northern Spain. Cad Saude Publica. 2020; 36(4): e00054020. https://dx.doi.org/10.1590/0102-311X00054020.
  16. Panchal N. Kamal R., Cox C., Garfield R. The implications of COVID-19 for mental health and substance use. 2021. URL: https://www.kff.org/coronavirus-covid-19/issue-brief/the-implications-of-covid-19-for-mental-health-and-substance-use/(date of access - 01.11.2022).
  17. Mehta P., McAuley D.F., Brown M. et al. COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet. 2020; 395(10229): 1033-34. https://dx.doi.org/10.1016/S0140-6736(20)30628-0.
  18. Garg P., Arora U., Kumar A., Wig N. The «post-COVID» syndrome: How deep is the damage? J Med Virol. 2021; 93(2): 673-74. https://dx.doi.org/10.1002/jmv.26465.
  19. Callard F., Perego E. How and why patients made Long Covid. Soc Sci Med. 2021; 268: 113426. https://dx.doi.org/10.1016/j.socscimed.2020.113426.
  20. Greenhalgh T., Knight M., A'Court C. et al. Management of post-acute covid-19 in primary care. BMJ. 2020; 370: m3026. https://dx.doi.org/10.1136/bmj.m3026.
  21. Lopez-Leon S., Wegman-Ostrosky T., Perelman C. et al. More than 50 Long-term effects of COVID-19: a systematic review and meta-analysis. medRxiv. 2021: 2021.01.27.21250617. https://dx.doi.org/10.1101/2021.01.27.21250617.
  22. Townsend L., Dowds J., O'Brien K. et al. Persistent poor health post-COVID-19 is not associated with respiratory complications or initial disease severity. Ann Am Thorac Soc. 2021; 18(6): 997-1003. https://dx.doi.org/10.1513/AnnalsATS.202009-1175OC.
  23. Townsend L., Dyer A.H., Jones K. et al. Persistent fatigue following SARS-CoV-2 infection is common and independent of severity of initial infection. PLoS One. 2020; 15(11): e0240784. https://dx.doi.org/10.1371/journal.pone.0240784.
  24. Боголепова А.Н., Осиновская Н.А., Коваленко Е.А., Махнович Е.В. Возможные подходы к терапии астенических и когнитивных нарушений при постковидном синдроме. Неврология, нейропсихиатрия, психосоматика. 2021; 13(4): 88-93. https://dx.doi.org/10.14412/2074-2711-2021-4-88-93. EDN: XRXGTR.
  25. Ahorsu D.K., Lin C.Y., Pakpour A.H. The association between health status and insomnia, mental health, and preventive behaviors: The mediating role of fear of COVID-19. Gerontol Geriatr Med. 2020; 6: 2333721420966081. https://dx.doi.org/10.1177/2333721420966081
  26. Choi E.H., Hui B.H., Wan E.F. Depression and anxiety in Hong Kong during COVID-19.Int J Environ Res Public Health. 2020; 17(10): 3740. https://dx.doi.org/10.3390/ijerph17103740.
  27. Dong L., Bouey J. Public mental health crisis during COVID-19 pandemic, China. Emerg Infect Dis. 2020; 26(7): 1616-18. https://dx.doi.org/10.3201/eid2607.200407.
  28. Pappa S., Ntella V., Giannakas T. et al. Prevalence of depression, anxiety, and insomnia among healthcare workers during the COVID-19 pandemic: A systematic review and meta-analysis. Brain Behav Immun. 2020; 88: 901-7. https://dx.doi.org/10.1016/j.bbi.2020.05.026.
  29. Stanton R., To Q.G., Khalesi S. et al. Depression, anxiety and stress during COVID-19: Associations with changes in physical activity, sleep, tobacco and alcohol use in australian adults.Int J Environ Res Public Health. 2020; 17(11): 4065. https://dx.doi.org/10.3390/ijerph17114065.
  30. Stein M.B. COVID-19 and anxiety and depression in 2020. Depress Anxiety. 2020; 37(4): 302. https://dx.doi.org/10.1002/da.22870.
  31. Yang Y., Li W., Zhang Q. et al. Mental health services for older adults in China during the COVID-19 outbreak. Lancet Psychiatry. 2020; 7(4): e19. https://dx.doi.org/10.1016/s2215-0366(20)30079-1.
  32. Lee S.A., Jobe M.C., Mathis A.A. et al. Incremental validity of coronaphobia: Coronavirus anxiety explains depression, generalized anxiety, and death anxiety. J Anxiety Disord. 2020; 74: 102268. https://dx.doi.org/10.1016/j.janxdis.2020.102268.
  33. Ozdin S., Ozdin S.B. Levels and predictors of anxiety, depression and health anxiety during COVID-19 pandemic in Turkish society: The importance of gender.Int J Soc Psychiatry. 2020; 66(5): 504-11. https://dx.doi.org/10.1177/0020764020927051.
  34. Chana-Cuevas P., Salles-Gandara P., Rojas-Fernandez A. et al. The potential role of SARS-CoV-2 in the pathogenesis of Parkinson's disease. Front Neurol. 2020; 11: 1044. https://dx.doi.org/10.3389/fneur.2020.01044.
  35. Nanda S., Handa R., Prasad A. et al. Covid-19 associated Guillain-Barre syndrome: Contrasting tale of four patients from a tertiary care centre in India. Am J Emerg Med. 2021; 39: 125-28. https://dx.doi.org/10.1016/j.ajem.2020.09.029.
  36. Зинчук А.Н., Зубач Е.А., Орфин А.Я., Плевачук О.Ю. Астенический синдром и его коррекция у пациентов с инфекционной патологией. Семейная медицина. 2019; 4: 41-46.
  37. Масленникова Н.А., Тихонова Е.П., Михайлова Л.А. Клинические аспекты проявления эхинококкоза печени. Современные проблемы науки и образования. 2018; 5: 22.
  38. Abbot N.C., Spence V. Chronic fatigue syndrome. Lancet. 2006; 67(9522): 1574; author reply 1 575. https://dx.doi.org/10.1016/S0140-6736(06)68688-1.
  39. Котова О.В., Акарачкова Е.С. Астенический синдром в практике невролога и семейного врача. РМЖ. 2016; 24(13): 824-829.
  40. Дюкова Г.М. Астенический синдром: проблемы диагностики и терапии. Эффективная фармакотерапия. 2012; 1: 40-45
  41. Повереннова И.Е., Золотовская И.А., Безгина Е.В. Диагностика и лечение астенического синдрома у лиц пожилого возраста, перенесших ОРВИ. Журнал неврологии и психиатрии им. С.С. Корсакова. 2014; 114(9): 73-76
  42. Hickie I., Davenport T., Wakefield D. et al. Post-infective and chronic fatigue syndromes precipitated by viral and non-viral pathogens: Prospective cohort study. BMJ. 2006; 333(7568): 575. https://dx.doi.org/10.1136/bmj.38933.585764.AE.
  43. Preedy V.R., Smith D.G., Salisbury J.R. et al. Biochemical and muscle studies in patients with acute onset post-viral fatigue syndrome. J Clin Pathol. 1993; 46(8): 722-26. https://dx.doi.org/10.1136/jcp.46.8722.
  44. Carruthers B.M., Jain A.K., De Meirleir K.L. et al. Myalgic encephalomyelitis/chronic fatigue syndrome: Clinical working case definition, diagnostic and treatment protocols. Journal of Chronic Fatigue Syndrome. 2003; 11(1): 7-115. https://dx.doi.org/10.1300/J092v11n01_02.
  45. Fukuda K., Straus S.E., Hickie I. et al. The chronic fatigue syndrome: a comprehensive approach to its definition and study.International chronic fatigue syndrome study group. Ann Intern Med. 1994; 121(12): 953-59. https://dx.doi.org/10.7326/0003-4819-121-12-199412150-00009.
  46. Воробьева Ю.Д., Дюкова Г.М. Астенический синдром в контексте пандемии COVID 19. Медицинский алфавит. 2020; 33: 26-34.
  47. Sasannejad C., Ely E.W., Lahiri S. Long-term cognitive impairment after acute respiratory distress syndrome: A review of clinical impact and pathophysiological mechanisms. Crit Care. 2019; 23(1): 352. https://dx.doi.org/10.1186/s13054-019-2626-z.
  48. Sykes D.L., Holdsworth L., Jawad N. et al. Post-COVID-19 symptom burden: What is Long-COVID and how should we manage it? Lung. 2021; 199(2): 113-19. https://dx.doi.org/10.1007/s00408-021-00423-z.
  49. Rauch B., Kern-Matschilles S., Haschka S.J. et al. COVID-19-related symptoms 6 months after the infection - Update on a prospective cohort study in Germany. MedRxiv. 2021: 10.1101/2021. 02.12.21251619. https://dx.doi.org/10.1101/2021.02.12.212516
  50. Zhou H., Lu S., Chen J. et al. The landscape of cognitive function in recovered COVID-19 patients. J Psychiatr Res. 2020; 129: 98-102. https://dx.doi.org/10.1016/j.jpsychires.2020.06.022.
  51. Jacomy H., Fragoso G., Almazan G., et al. Human coronavirus OC43 infection induces chronic encephalitis leading to disabilities in BALB/C mice. Virology. 2006; 349(2): 335-46. https://dx.doi.org/10.1016/j.virol.2006.01.049.
  52. Arbi Y.M., Harthi A., Hussein J. Severe neurologic syndrome associated with Middle East respiratory syndrome corona virus (MERS-CoV). Infection. 2015; 43(4): 495-501. https://dx.doi.org/10.1007/s15010-015-0720-y.
  53. Мартынов М.Ю., Боголепова А.Н., Ясаманова А.Н. Эндотелиальная дисфункция при COVID-19 и когнитивные нарушения. Журнал неврологии и психиатрии им. С.С. Корсакова. 2021; 121(6): 93-99
  54. Egbert A.R., Cankurtaran S., Karpiak S. Brain abnormalities in COVID-19 acute/subacute phase: A rapid systematic review. Brain Behav Immun. 2020; 89: 543-54. https://dx.doi.org/10.1016/j.bbi.2020.07.014.
  55. Delorme C., Paccoud O., Kas A. et al. Covid-19 related encephalopathy: A case series with brain FDG-PET/CT findings. Eur J Neurol. 2020; 27(12): 2651-57. https://dx.doi.org/10.1111/ene.14478.
  56. Evans P.C., Rainger G.E., Mason J.C. et al. Endothelial dysfunction in COVID-19: A position paper of the ESC Working Group for Atherosclerosis and Vascular Biology, and the ESC Council of Basic Cardiovascular Science. Cardiovasc Res. 2020; 116(14): 2177-84. https://dx.doi.org/10.1093/cvr/cvaa230.
  57. Panju A.H., Danesh A., Minden M.D. et al. Relationship between fatigue and cytokine levels in patients age 50+ with acute myeloid leukemia (AML). Blood. 2006; 108(11): 4507. https://doi.org/10.1182/blood.V108.11.4507.4507.
  58. Bower J.E. Cancer-related fatigue-mechanisms, risk factors, and treatments. Nat Rev Clin Oncol. 2014; 11(10): 597-609. https://dx.doi.org/10.1038/nrclinonc.2014.127.
  59. Zielinski M.R., Systrom D.M., Rose N.R. Fatigue, sleep, and autoimmune and related disorders. Front Immunol. 2019; 10: 1827. https://dx.doi.org/10.3389/fimmu.2019.01827.
  60. Zhang J.M., An J. Cytokines, inflammation, and pain.Int Anesthesiol Clin. 2007; 45(2): 27-37. https://dx.doi.org/10.1097/AIA.0b013e318034194e.
  61. Neri S., Pistone G., Saraceno B. et al. L-carnitine decreases severity and type of fatigue induced by interferon-alpha in the treatment of patients with hepatitis C. Neuropsychobiology. 2003; 47(2): 94-97. https://dx.doi.org/10.1159/000070016.
  62. Yamato M., Kataoka Y. Fatigue sensation following peripheral viral infection is triggered by neuroinflammation: Who will answer these questions? Neural Regen Res. 2015; 10(2): 203-4. https://dx.doi.org/10.4103/1673-5374.152369.
  63. Lorusso L., Mikhaylova S.V., Capelli E. et al. Immunological aspects of chronic fatigue syndrome. Autoimmun Rev. 2009; 8(4): 287-91. https://dx.doi.org/10.1016/j.autrev.2008.08.003.
  64. Filler K., Lyon D., Bennett J. et al. Association of mitochondrial dysfunction and fatigue: A review of the literature. BBA Clin. 2014; 1: 12-23. https://dx.doi.org/10.1016/j.bbacli.2014.04.001
  65. Smits B., van den Heuvel L., Knoop H. et al. Mitochondrial enzymes discriminate between mitochondrial disorders and chronic fatigue syndrome. Mitochondrion. 2011; 11(5): 735-38. https://dx.doi.org/10.1016/j.mito.2011.05.005.
  66. Chen R., Liang F.X., Moriya J. et al. Chronic fatigue syndrome and the central nervous system. J Int Med Res. 2008; 36(5): 867-74. https://dx.doi.org/10.1177/147323000803600501.
  67. Kedor C., Freitag H., Meyer-Arndt L. et al. Chronic COVID-19 Syndrome and Chronic Fatigue Syndrome (ME/CFS) following the first pandemic wave in Germany - a first analysis of a prospective observational study. Nat Commun. 2022; 13: 5104. https://dx.doi.org/10.1038/s41467-022-32507-6.
  68. Davis H.E., Assaf G.S., McCorkell L. et al. Characterizing long COVID in an international cohort: 7 months of symptoms and their impact. EClinicalMedicine. 2021; 38: 101019. https://dx.doi.org/10.1016/j.eclinm.2021.101019.
  69. Lewis G., Wessely S. The epidemiology of fatigue: more questions than answers. J Epidemiol Community Health. 1992; 46(2): 92-97. https://dx.doi.org/10.1136/jech.46.2.92.
  70. Young B.E., Ong S.W.X., Kalimuddin S. et al. Epidemiologic features and clinical course of patients infected with SARS-CoV-2 in Singapore. JAMA. 2020; 323(15): 1488-94. https://dx.doi.org/10.1001/jama.2020.3204 [published correction appears in https://dx.doi.org/10.1001/jama.2020.4372].
  71. Klok F.A., Boon G.J.A.M., Barco S. et al. The Post-COVID-19 Functional Status scale: a tool to measure functional status over time after COVID-19. Eur Respir J. 2020; 56(1): 2001494. https://dx.doi.org/10.1183/13993003.01494-2020.
  72. Kamdar B.B., King L.M., Collop N.A. et al. The effect of a quality improvement intervention on perceived sleep quality and cognition in a medical ICU. Crit Care Med. 2013; 41(3): 800-9. https://dx.doi.org/10.1097/CCM.0b013e3182746442.
  73. Finsterer J., Mahjoub S.Z. Fatigue in healthy and diseased individuals. Am J Hosp. Palliat Care. 2014; 31(5): 562-75. https://dx.doi.org/10.1177/10499091134947480.
  74. Barazzoni R., Bischoff S.C., Breda J. et al. ESPEN expert statements and practical guidance for nutritional management of individuals with SARS-CoV-2 infection. Clin Nutr. 2020; 39(6): 1631-38. https://dx.doi.org/10.1016/j.clnu.2020.03.022.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies