Астенические расстройства в контексте пандемии COVID-19


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

К числу наиболее частых нарушений здоровья у пациентов, перенесших COVID-19, относятся постинфекционная астения, которая может персистировать в течение более 100 дней после начала респираторных симптомов, и когнитивные расстройства. Большинство постковидных пациентов выздоравливает не полностью и имеет широкий спектр хронических симптомов, проявляющихся в течение нескольких недель или месяцев после заражения в виде нарушений неврологического, когнитивного или психиатрического характера. Астенический синдром, многочисленные эмоциональные и когнитивные расстройства после перенесенного COVID-19 снижают качество жизни, замедляют процесс восстановления и возвращения пациентов к исходному уровню повседневной активности, что требует тщательного наблюдения за пациентами для своевременного выявления и коррекции этих нарушений с помощью лечебно-реабилитационных мер.

Полный текст

Доступ закрыт

Об авторах

Анна Николаевна Боголепова

ФГАОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России; ФГБУ «Федеральный центр мозга и нейротехнологий» ФМБА России

Email: annabogolepova@yandex.ru
д.м.н., профессор кафедры неврологии, нейрохирургии и медицинской генетики 117997, г. Москва, ул. Островитянова, д. 1

Нина Алексеевна Осиновская

ФГБУ «Федеральный центр мозга и нейротехнологий» ФМБА России

Email: 4246290@mail.ru
научный сотрудник отдела когнитивных нарушений 117997, г. Москва, ул. Островитянова, д. 1

Список литературы

  1. World Health Organization (2020). Coronavirus disease 2019 (COVID-19): Situation report, 55. World Health Organization. URL: https://apps.who.int/iris/handle/10665/331479 (date of access - 01.11.2022).
  2. Hozhabri H., Sparascio F.S., Sohrabi H. et al. The global emergency of novel coronavirus (SARS-CoV-2): An update of the current status and forecasting.Int J Environ Res Public Health. 2020; 17(16): 5648. https://dx.doi.org/10.3390/ijerph17165648.
  3. Yang Y., Peng F., Wang R. et al. The deadly coronaviruses: The 2003 SARS pandemic and the 2020 novel coronavirus epidemic in China. J Autoimmun. 2020; 109: 102434. https://dx.doi.org/10.1016/j.jaut.2020.102434.
  4. Al-Samkari H., Leaf R.K., Dzik W.H. et al. COVID-19 and coagulation: Bleeding and thrombotic manifestations of SARS-CoV-2 infection. Blood. 2020; 136(4): 489-500. https://dx.doi.org/10.1182/blood.2020006520.
  5. Amraei R., Rahimi N. COVID-19, renin-angiotensin system and endothelial dysfunction. Cells. 2020; 9(7): 1652. https://dx.doi.org/10.3390/cells9071652.
  6. Bikdeli B., Madhavan M.V., Jimenez D. et al. COVID-19 and thrombotic or thromboembolic disease: Implications for prevention, antithrombotic therapy, and follow-up: JACC state-of-the-art review. J Am Coll Cardiol. 2020; 75(23): 2950-73. https://dx.doi.org/10.1016/j.jacc.2020.04.031.
  7. Rogers J.P., Chesney E., Oliver D. et al. Psychiatric and neuropsychiatric pre-sentations associated with severe coronavirus infections: A systematic review and meta-analysis with comparison to the COVID-19 pandemic. Lancet Psychiatry. 2020; 7(7): 611-27. https://dx.doi.org/10.1016/S2215-0366(20)30203-0.
  8. Goldberg J.F. Psychiatry's niche role in the COVIDE19 pandemic. J Clin Psychiatry. 2020; 81(3): 20com13363. https://dx.doi.org/10.4088/JCP.20com13363.
  9. Li Y.C., Bai W.Z., Hashikawa T. The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. J Med Virol. 2020; 92(6): 552-55. https://dx.doi.org/10.1002/jmv.25728.
  10. Yao H., Chen J.H., Xu Y.F. Patients with mental health disorders in the COVID-19 epidemic. Lancet Psychiatry. 2020; 7(4): e21. https://dx.doi.org/10.1016/S2215-0366(20)30090-0.
  11. Медведев В.Э., Доготарь О.А. COVID-19 и психическое здоровье: вызовы и первые выводы. Неврология, нейропсихиатрия, психосоматика. 2020; 12(6): 4-10.
  12. Brooks S.K., Webster R.K., Smith L.E. et al. The psychological impact of quarantine and how to reduce it: rapid review of the evidence. The Lancet. 2020; 395(10227): 912-20. https://dx.doi.org/10.1016/S0140-6736(20)30460-8.
  13. Qiu J., Shen B., Zhao M. et al. A nationwide survey of psychological distress among Chinese people in the COVID-19 epidemic: Implications and policy recommendations. Gen Psychiatr. 2020; 33(2): e100213. https://dx.doi.org/10.1136/gpsych-2020-100213 [published correction appears in https://dx.doi.org/10.1136/gpsych-2020-100213corr1].
  14. Figueroa C.A., Aguilera A. The need for a mental health technology revolution in the COVID-19 pandemic. Front Psychiatry. 2020; 11: 523. https://dx.doi.org/10.3389/fpsyt.2020.00523.
  15. Ozamiz-Etxebarria N., Dosil-Santamaria M., Picaza-Gorrochategui M. et al. Stress, anxiety, and depression levels in the initial stage of the COVID-19 outbreak in a population sample in the northern Spain. Cad Saude Publica. 2020; 36(4): e00054020. https://dx.doi.org/10.1590/0102-311X00054020.
  16. Panchal N. Kamal R., Cox C., Garfield R. The implications of COVID-19 for mental health and substance use. 2021. URL: https://www.kff.org/coronavirus-covid-19/issue-brief/the-implications-of-covid-19-for-mental-health-and-substance-use/(date of access - 01.11.2022).
  17. Mehta P., McAuley D.F., Brown M. et al. COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet. 2020; 395(10229): 1033-34. https://dx.doi.org/10.1016/S0140-6736(20)30628-0.
  18. Garg P., Arora U., Kumar A., Wig N. The «post-COVID» syndrome: How deep is the damage? J Med Virol. 2021; 93(2): 673-74. https://dx.doi.org/10.1002/jmv.26465.
  19. Callard F., Perego E. How and why patients made Long Covid. Soc Sci Med. 2021; 268: 113426. https://dx.doi.org/10.1016/j.socscimed.2020.113426.
  20. Greenhalgh T., Knight M., A'Court C. et al. Management of post-acute covid-19 in primary care. BMJ. 2020; 370: m3026. https://dx.doi.org/10.1136/bmj.m3026.
  21. Lopez-Leon S., Wegman-Ostrosky T., Perelman C. et al. More than 50 Long-term effects of COVID-19: a systematic review and meta-analysis. medRxiv. 2021: 2021.01.27.21250617. https://dx.doi.org/10.1101/2021.01.27.21250617.
  22. Townsend L., Dowds J., O'Brien K. et al. Persistent poor health post-COVID-19 is not associated with respiratory complications or initial disease severity. Ann Am Thorac Soc. 2021; 18(6): 997-1003. https://dx.doi.org/10.1513/AnnalsATS.202009-1175OC.
  23. Townsend L., Dyer A.H., Jones K. et al. Persistent fatigue following SARS-CoV-2 infection is common and independent of severity of initial infection. PLoS One. 2020; 15(11): e0240784. https://dx.doi.org/10.1371/journal.pone.0240784.
  24. Боголепова А.Н., Осиновская Н.А., Коваленко Е.А., Махнович Е.В. Возможные подходы к терапии астенических и когнитивных нарушений при постковидном синдроме. Неврология, нейропсихиатрия, психосоматика. 2021; 13(4): 88-93. https://dx.doi.org/10.14412/2074-2711-2021-4-88-93. EDN: XRXGTR.
  25. Ahorsu D.K., Lin C.Y., Pakpour A.H. The association between health status and insomnia, mental health, and preventive behaviors: The mediating role of fear of COVID-19. Gerontol Geriatr Med. 2020; 6: 2333721420966081. https://dx.doi.org/10.1177/2333721420966081
  26. Choi E.H., Hui B.H., Wan E.F. Depression and anxiety in Hong Kong during COVID-19.Int J Environ Res Public Health. 2020; 17(10): 3740. https://dx.doi.org/10.3390/ijerph17103740.
  27. Dong L., Bouey J. Public mental health crisis during COVID-19 pandemic, China. Emerg Infect Dis. 2020; 26(7): 1616-18. https://dx.doi.org/10.3201/eid2607.200407.
  28. Pappa S., Ntella V., Giannakas T. et al. Prevalence of depression, anxiety, and insomnia among healthcare workers during the COVID-19 pandemic: A systematic review and meta-analysis. Brain Behav Immun. 2020; 88: 901-7. https://dx.doi.org/10.1016/j.bbi.2020.05.026.
  29. Stanton R., To Q.G., Khalesi S. et al. Depression, anxiety and stress during COVID-19: Associations with changes in physical activity, sleep, tobacco and alcohol use in australian adults.Int J Environ Res Public Health. 2020; 17(11): 4065. https://dx.doi.org/10.3390/ijerph17114065.
  30. Stein M.B. COVID-19 and anxiety and depression in 2020. Depress Anxiety. 2020; 37(4): 302. https://dx.doi.org/10.1002/da.22870.
  31. Yang Y., Li W., Zhang Q. et al. Mental health services for older adults in China during the COVID-19 outbreak. Lancet Psychiatry. 2020; 7(4): e19. https://dx.doi.org/10.1016/s2215-0366(20)30079-1.
  32. Lee S.A., Jobe M.C., Mathis A.A. et al. Incremental validity of coronaphobia: Coronavirus anxiety explains depression, generalized anxiety, and death anxiety. J Anxiety Disord. 2020; 74: 102268. https://dx.doi.org/10.1016/j.janxdis.2020.102268.
  33. Ozdin S., Ozdin S.B. Levels and predictors of anxiety, depression and health anxiety during COVID-19 pandemic in Turkish society: The importance of gender.Int J Soc Psychiatry. 2020; 66(5): 504-11. https://dx.doi.org/10.1177/0020764020927051.
  34. Chana-Cuevas P., Salles-Gandara P., Rojas-Fernandez A. et al. The potential role of SARS-CoV-2 in the pathogenesis of Parkinson's disease. Front Neurol. 2020; 11: 1044. https://dx.doi.org/10.3389/fneur.2020.01044.
  35. Nanda S., Handa R., Prasad A. et al. Covid-19 associated Guillain-Barre syndrome: Contrasting tale of four patients from a tertiary care centre in India. Am J Emerg Med. 2021; 39: 125-28. https://dx.doi.org/10.1016/j.ajem.2020.09.029.
  36. Зинчук А.Н., Зубач Е.А., Орфин А.Я., Плевачук О.Ю. Астенический синдром и его коррекция у пациентов с инфекционной патологией. Семейная медицина. 2019; 4: 41-46.
  37. Масленникова Н.А., Тихонова Е.П., Михайлова Л.А. Клинические аспекты проявления эхинококкоза печени. Современные проблемы науки и образования. 2018; 5: 22.
  38. Abbot N.C., Spence V. Chronic fatigue syndrome. Lancet. 2006; 67(9522): 1574; author reply 1 575. https://dx.doi.org/10.1016/S0140-6736(06)68688-1.
  39. Котова О.В., Акарачкова Е.С. Астенический синдром в практике невролога и семейного врача. РМЖ. 2016; 24(13): 824-829.
  40. Дюкова Г.М. Астенический синдром: проблемы диагностики и терапии. Эффективная фармакотерапия. 2012; 1: 40-45
  41. Повереннова И.Е., Золотовская И.А., Безгина Е.В. Диагностика и лечение астенического синдрома у лиц пожилого возраста, перенесших ОРВИ. Журнал неврологии и психиатрии им. С.С. Корсакова. 2014; 114(9): 73-76
  42. Hickie I., Davenport T., Wakefield D. et al. Post-infective and chronic fatigue syndromes precipitated by viral and non-viral pathogens: Prospective cohort study. BMJ. 2006; 333(7568): 575. https://dx.doi.org/10.1136/bmj.38933.585764.AE.
  43. Preedy V.R., Smith D.G., Salisbury J.R. et al. Biochemical and muscle studies in patients with acute onset post-viral fatigue syndrome. J Clin Pathol. 1993; 46(8): 722-26. https://dx.doi.org/10.1136/jcp.46.8722.
  44. Carruthers B.M., Jain A.K., De Meirleir K.L. et al. Myalgic encephalomyelitis/chronic fatigue syndrome: Clinical working case definition, diagnostic and treatment protocols. Journal of Chronic Fatigue Syndrome. 2003; 11(1): 7-115. https://dx.doi.org/10.1300/J092v11n01_02.
  45. Fukuda K., Straus S.E., Hickie I. et al. The chronic fatigue syndrome: a comprehensive approach to its definition and study.International chronic fatigue syndrome study group. Ann Intern Med. 1994; 121(12): 953-59. https://dx.doi.org/10.7326/0003-4819-121-12-199412150-00009.
  46. Воробьева Ю.Д., Дюкова Г.М. Астенический синдром в контексте пандемии COVID 19. Медицинский алфавит. 2020; 33: 26-34.
  47. Sasannejad C., Ely E.W., Lahiri S. Long-term cognitive impairment after acute respiratory distress syndrome: A review of clinical impact and pathophysiological mechanisms. Crit Care. 2019; 23(1): 352. https://dx.doi.org/10.1186/s13054-019-2626-z.
  48. Sykes D.L., Holdsworth L., Jawad N. et al. Post-COVID-19 symptom burden: What is Long-COVID and how should we manage it? Lung. 2021; 199(2): 113-19. https://dx.doi.org/10.1007/s00408-021-00423-z.
  49. Rauch B., Kern-Matschilles S., Haschka S.J. et al. COVID-19-related symptoms 6 months after the infection - Update on a prospective cohort study in Germany. MedRxiv. 2021: 10.1101/2021. 02.12.21251619. https://dx.doi.org/10.1101/2021.02.12.212516
  50. Zhou H., Lu S., Chen J. et al. The landscape of cognitive function in recovered COVID-19 patients. J Psychiatr Res. 2020; 129: 98-102. https://dx.doi.org/10.1016/j.jpsychires.2020.06.022.
  51. Jacomy H., Fragoso G., Almazan G., et al. Human coronavirus OC43 infection induces chronic encephalitis leading to disabilities in BALB/C mice. Virology. 2006; 349(2): 335-46. https://dx.doi.org/10.1016/j.virol.2006.01.049.
  52. Arbi Y.M., Harthi A., Hussein J. Severe neurologic syndrome associated with Middle East respiratory syndrome corona virus (MERS-CoV). Infection. 2015; 43(4): 495-501. https://dx.doi.org/10.1007/s15010-015-0720-y.
  53. Мартынов М.Ю., Боголепова А.Н., Ясаманова А.Н. Эндотелиальная дисфункция при COVID-19 и когнитивные нарушения. Журнал неврологии и психиатрии им. С.С. Корсакова. 2021; 121(6): 93-99
  54. Egbert A.R., Cankurtaran S., Karpiak S. Brain abnormalities in COVID-19 acute/subacute phase: A rapid systematic review. Brain Behav Immun. 2020; 89: 543-54. https://dx.doi.org/10.1016/j.bbi.2020.07.014.
  55. Delorme C., Paccoud O., Kas A. et al. Covid-19 related encephalopathy: A case series with brain FDG-PET/CT findings. Eur J Neurol. 2020; 27(12): 2651-57. https://dx.doi.org/10.1111/ene.14478.
  56. Evans P.C., Rainger G.E., Mason J.C. et al. Endothelial dysfunction in COVID-19: A position paper of the ESC Working Group for Atherosclerosis and Vascular Biology, and the ESC Council of Basic Cardiovascular Science. Cardiovasc Res. 2020; 116(14): 2177-84. https://dx.doi.org/10.1093/cvr/cvaa230.
  57. Panju A.H., Danesh A., Minden M.D. et al. Relationship between fatigue and cytokine levels in patients age 50+ with acute myeloid leukemia (AML). Blood. 2006; 108(11): 4507. https://doi.org/10.1182/blood.V108.11.4507.4507.
  58. Bower J.E. Cancer-related fatigue-mechanisms, risk factors, and treatments. Nat Rev Clin Oncol. 2014; 11(10): 597-609. https://dx.doi.org/10.1038/nrclinonc.2014.127.
  59. Zielinski M.R., Systrom D.M., Rose N.R. Fatigue, sleep, and autoimmune and related disorders. Front Immunol. 2019; 10: 1827. https://dx.doi.org/10.3389/fimmu.2019.01827.
  60. Zhang J.M., An J. Cytokines, inflammation, and pain.Int Anesthesiol Clin. 2007; 45(2): 27-37. https://dx.doi.org/10.1097/AIA.0b013e318034194e.
  61. Neri S., Pistone G., Saraceno B. et al. L-carnitine decreases severity and type of fatigue induced by interferon-alpha in the treatment of patients with hepatitis C. Neuropsychobiology. 2003; 47(2): 94-97. https://dx.doi.org/10.1159/000070016.
  62. Yamato M., Kataoka Y. Fatigue sensation following peripheral viral infection is triggered by neuroinflammation: Who will answer these questions? Neural Regen Res. 2015; 10(2): 203-4. https://dx.doi.org/10.4103/1673-5374.152369.
  63. Lorusso L., Mikhaylova S.V., Capelli E. et al. Immunological aspects of chronic fatigue syndrome. Autoimmun Rev. 2009; 8(4): 287-91. https://dx.doi.org/10.1016/j.autrev.2008.08.003.
  64. Filler K., Lyon D., Bennett J. et al. Association of mitochondrial dysfunction and fatigue: A review of the literature. BBA Clin. 2014; 1: 12-23. https://dx.doi.org/10.1016/j.bbacli.2014.04.001
  65. Smits B., van den Heuvel L., Knoop H. et al. Mitochondrial enzymes discriminate between mitochondrial disorders and chronic fatigue syndrome. Mitochondrion. 2011; 11(5): 735-38. https://dx.doi.org/10.1016/j.mito.2011.05.005.
  66. Chen R., Liang F.X., Moriya J. et al. Chronic fatigue syndrome and the central nervous system. J Int Med Res. 2008; 36(5): 867-74. https://dx.doi.org/10.1177/147323000803600501.
  67. Kedor C., Freitag H., Meyer-Arndt L. et al. Chronic COVID-19 Syndrome and Chronic Fatigue Syndrome (ME/CFS) following the first pandemic wave in Germany - a first analysis of a prospective observational study. Nat Commun. 2022; 13: 5104. https://dx.doi.org/10.1038/s41467-022-32507-6.
  68. Davis H.E., Assaf G.S., McCorkell L. et al. Characterizing long COVID in an international cohort: 7 months of symptoms and their impact. EClinicalMedicine. 2021; 38: 101019. https://dx.doi.org/10.1016/j.eclinm.2021.101019.
  69. Lewis G., Wessely S. The epidemiology of fatigue: more questions than answers. J Epidemiol Community Health. 1992; 46(2): 92-97. https://dx.doi.org/10.1136/jech.46.2.92.
  70. Young B.E., Ong S.W.X., Kalimuddin S. et al. Epidemiologic features and clinical course of patients infected with SARS-CoV-2 in Singapore. JAMA. 2020; 323(15): 1488-94. https://dx.doi.org/10.1001/jama.2020.3204 [published correction appears in https://dx.doi.org/10.1001/jama.2020.4372].
  71. Klok F.A., Boon G.J.A.M., Barco S. et al. The Post-COVID-19 Functional Status scale: a tool to measure functional status over time after COVID-19. Eur Respir J. 2020; 56(1): 2001494. https://dx.doi.org/10.1183/13993003.01494-2020.
  72. Kamdar B.B., King L.M., Collop N.A. et al. The effect of a quality improvement intervention on perceived sleep quality and cognition in a medical ICU. Crit Care Med. 2013; 41(3): 800-9. https://dx.doi.org/10.1097/CCM.0b013e3182746442.
  73. Finsterer J., Mahjoub S.Z. Fatigue in healthy and diseased individuals. Am J Hosp. Palliat Care. 2014; 31(5): 562-75. https://dx.doi.org/10.1177/10499091134947480.
  74. Barazzoni R., Bischoff S.C., Breda J. et al. ESPEN expert statements and practical guidance for nutritional management of individuals with SARS-CoV-2 infection. Clin Nutr. 2020; 39(6): 1631-38. https://dx.doi.org/10.1016/j.clnu.2020.03.022.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© ООО «Бионика Медиа», 2022

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах