Influence of fenofibrate on dyslipidemia and diabetic polyneuropathy in patients with diabetes mellitus type 2


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The incidence of diabetes mellitus (DM) is increasing worldwide every year. Diabetes mellitus type 2 is becoming younger and more of a problem because of early disability in connection with the development of microvascular complications. The most common complication of DM is diabetic polyneuropathy which can lead to diabetic foot and amputation. In addition, the current DM is accompanied by the presence of hypertriglyceridemia, which in turn is a risk factor for development of cardiovascular complications (heart attack, stroke) in patients with DM. Currently an urgent problem in the treatment of DM is to develop therapies to prevent the development of late microvascular complications. According to the results of many studies, the use of fenofibrate in patients with diabetes mellitus type 2 normalizes lipid metabolism, contributes to a significant reduction in the progression of diabetic neuropathy and reduce the number of amputations related to diabetes.

Full Text

Restricted Access

About the authors

Tatiana Yulievna Demidova

Russian Medical Academy of Postgraduate Education

Email: t.y.demidova@gmail.com
MD, professor, professor of the Department of endocrinology

Irina Nikolaevna Drozdova

Russian Medical Academy of Postgraduate Education

Email: docdrozdova@yandex.ru
graduate student, Department of endocrinology

References

  1. IDF Diabetes Atlas. 6th Edition. Available from: http://www.idf.org/diabetesatlas.
  2. Дедов И.И., Шестакова М.В., Галстян Г.Р. Сахарный диабет. 2016;19(2):104-12. [Dedov I.I., Shestakova M.V., Galstyan G.R. Diabetes mellitus. 2016;19(2):104-12 (in Russian)]
  3. Диагностика и коррекция нарушений липидного обмена с целью профилактики и лечения атеросклероза. Российские рекомендации. V пересмотр. Москва, 2012 г. [Diagnosis and correction of lipid metabolism disorders in order of prevention and treatment of atherosclerosis. Russian recommendations. V revision. Moscow, 2012 (in Russian)]
  4. Miselli М.-А., Nora E.D., Passaro A., Tomasi F., Zuliani G. Plasma triglycerides predict ten-years all-cause mortality in outpatients with type 2 diabetes mellitus: a longitudinal observational study. Cardiovasc. Diabetology. 2014;13:135.
  5. Hermans M.P., Fruchart J.-C. Reducing residual vascular risk in patients with atherogenic dyslipidemia: where do we go from here? Clin. Lipidol. 2010;5(6):811-26.
  6. Berger J.S., McGinn A.P., Howard B.V., Kuller L., Manson J.E., Otvos J., Curb J.D., Eaton C.B., Kaplan R.C., Lynch J.K., Rosenbaum D.M., Wassertheil-Smoller S. Lipid and lipoprotein biomarkers and the risk of ischemic stroke in postmenopausal women. Stroke. 2012;43(4):958-66.
  7. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414:813-20.
  8. Brownlee M. The pathobiology of diabetic complications. A unifying mechanism. Diabetes. 2005;54:1615-25.
  9. Wang X.-M., Lehky T.J., Brell J.M., Dorsey S.G. Discovering cytokines as targets for chemotherapy-induced painful peripheral neuropathy. Cytokine. 2012;59:3-9.
  10. Fromont A., De Seze J., Fleury M.C., Maillefert J.F., Moreau T. Inflammatory demyelinating events following treatment with anti-tumor necrosis factor. Cytokine. 2009;45:55-7.
  11. Malik R.A., Newrick P.G., Sharma A.K., Jennings A., Ah-See A.K., Mayhew T.M., Jakubowski J., Boulton A.J., Ward J.D. Microangiopathy in human diabetic neuropathy: relationship between capillary abnormalities and the severity of neuropathy. Diabetologia. 1989;32:92-102.
  12. Yu L., Yang X., Hua Z., Xie W. Serum levels of proinflammatory cytokines in diabetic patients with peripheral neuropathic pain and the correlation among them. Zhonghua Yi Xue Za Zhi. 2009;89(7):469-471.
  13. Doupis J., Lyons T.E., Wu S., Gnardellis C., Dinh T., Veves A. Microvascular reactivity and inflammatory cytokines in painful and painless peripheral diabetic neuropathy. J. Clin. Endocrinol. Metab. 2009;94(6):2157-63.
  14. Papanas N., Katsiki N., Papatheodorou K., Demetriou M., Papazoglou D., Gioka T., et al. Peripheral neuropathy is associated with increased serum levels of uric acid in type 2 diabetes mellitus. Angiology. 2011;62(4):291-5.
  15. Purwata T. High TNFalpha plasma levels and macrophages iNOS and TNFalpha expression as risk factors for painful diabetic neuropathy. JPR. 2011;4:169-75.
  16. Herder C., Bongaerts B.W.C., Rathmann W., Heier M., Kowall B., Koenig W., Thorand B., Roden M., Meisinger C., Ziegler D. Association of subclinical inflammation with polyneuropathy in the older population: KORA F4 study. Diabetes Care. 2013;36(11):3663-70.
  17. Rajamani K., Donoghoe M., et al. 78th EAS Congress/Atherosclerosis Supplements 11. 2010;2:219-20.
  18. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet. 1998;352:837-53.
  19. Holman R.R., Paul S.K., Bethel M.A., Matthews D.R., Neil H.A. 10-year follow-up of intensive glucose control in type 2 diabetes. N. Engl. J. Med. 2008;359:1577-89.
  20. Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of cholesterol-lowering with simvastatin in 5963 people with diabetes: a randomised placebo controlled trial. Lancet. 2003;361:2005-16.
  21. Ryan K.E., McCance D.R., Powell L., McMahon R., Trimble E.R. Fenofibrate and pioglitazone improve endothelial function and reduce arterial stiffness in obese glucose tolerant men. Atherosclerosis. 2007;194:e123-30.
  22. Rosenson R.S., Helenowski I.B. Fenofibrate abrogates postprandial blood viscosity among hypertriglyceridemia subjects with the metabolic syndrome. Diab. Met. Syndr. Clin. Res. Rev. 2009;3:17-23.
  23. Koh K., Han S., Quon M. Beneficial effects of fenofibrate to improve endothelial dysfunction and raise adiponectin levels in patients with primary hypertriglyceridemia. Diabetes Care. 2005;28:1419-24.
  24. Panigrahy D., Kaipainen A., Huang S., Butterfield C.E., Barnés C.M., Fannon M., Laforme A.M., Chaponis D.M., Folkman J., Kieran M.W. PPAR alpha agonist fenofibrate suppresses tumor growth through direct and indirect angiogenesis inhibition. Proc. Natl. Acad. Sci. USA. 2008;105:985-90.
  25. Kim J., Ahn J.H., Kim J.H., Yu Y.S., Kim H.S., Ha J., Shinn S.H., Oh Y.S. Fenofibrate regulates retinal endothelial cell survival through the AMPK signal transduction pathway. Exp. Eye Res. 2007;84:886-93.
  26. Murakami H., Murakami R., Kambe F., Cao X., Takahashi R., Asai T., Hirai T., Numaguchi Y., Okumura K., Seo H., Murohara T. Fenofibrate activates AMPK and increases eNOS phosphorylation in HUVEC. Biochem. Biophys. Res. Commun. 2006;341:973-8.
  27. Losada M., Alio J.L. Malondialdehyde serum concentration in type 1 diabetic with and without retinopathy. Doc. Ophthalmol. 1997;93:223-9.
  28. Deplanque D., Gelé P., Pétrault O., Six I., Furman C., Bouly M., Nion S., Dupuis B., Leys D., Fruchart J.C., Cecchelli R., Staels B., Duriez P., Bordet R. Peroxisome proliferator-activated receptor-alpha activation as a mechanism of preventive neuroprotection induced by chronic fenofibrate treatment. J. Neurosci. 2003;23:6264-71.
  29. Kornitzer M., Dramax M., Vanderbrock M.D. et al. Efficacy and tolerance of 200 mg micronised fenofibrate alministered over a 6-month period in hyperlipidemic patients: an open Belgian multicenter study. Atherosclerosis. 1994;110 (Suppl):S49-S54.
  30. Kirchgassler K.U., Schmitz H., Bach G. Effectivenes and tolerability of 12-week treatment with micronized fenofibrate 200 mg in a drug - monitoring programme involving 9884 patients with dyslipidemia. Clin. Drug Invest. 1998;15:197-204.
  31. Poulter N. The impact of micronized fenofibrate on lipid subfractions and on reaching HDL-target levels in 7098 patients with dyslipidemia. Brit. J. Cardiol. 1999;6:682-5.
  32. Frick M.H., Elo M.O., Haapa K. et al. Helsinki Heart Study: primary prevention trial with gemfibrozil in middle aged men with dyslipidemia. Safety of treatment, Changes in risk factors and incidence of coronary heart disease. N. Engl. J. Med. 1987;317:1237-45.
  33. Rubins H.B., Robins S.J., Collins D., Fye C.L., Anderson J.W., Elam M.B., Faas F.H., Linares E., Schaefer E.J., Schectman G., Wilt T.J., Wittes J. Gemfibrosil for the secondary prevention of coronary heart disease in men with low lewels of high-density lipoprotein cholesterol. N. Engl. J. Med. 1999;341:410-8.
  34. The BIP Study group. Secondary prevention by raising HDL cholesterol and reducing triglycerides in patients with coronary artery disease. The bezafibrate infarction prevention (BIP) study. Circulation. 2000;102:21-7.
  35. Erricsson C.G., Hamsted A., Nilsson J. et al. Angiographic assessment of bezafibrate on progression of coronary artery disease in young male postinfarction patients. Lancet. 1996;347:849-53.
  36. Bunte T., Hahmann H.W., Hellwig N. et al. Effects of fenofibrate on angiographically examined coronary atherosclerosis and left ventricular function in hypercholesterolemic patients. Atherosclerosis. 1993;98:127-38.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies