Regulatory action of Laennec’ peptides at mitochondrial processes


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Disorders of mitochondrial functions are associated with complex of negative late effects for all types of cells and lead to faster aging of organism’s tissues. Article introduces the results of analysis of peptide medicament Laennec, pointing out at the molecular action mechanisms of the medicine at mitochondrial function. There are found Laennec peptides helping to slow down cellular apoptosis in conditions of oxidative/toxic stress, chronic inflammation and hyperinsulinemia due to Bcl-2 antiapoptotic protein activation, PPARA receptor, G6 adhesive G-protein receptor, МАР-kinases, В proteinkinase and pyruvate dehydrogenase kinases.

Full Text

Restricted Access

About the authors

Olga A. Gromova

Ivanovo state medical academy of the Ministry of Health of Russia; «Informatics and management» Federal Research Center of the RAS

Email: unesco.gromova@gmail.com
MD, professor of the Department of pharmacology

Ivan Ju. Torshin

«Informatics and management» Federal Research Center of the RAS

Ph.D. in physics and mathematics, senior staff scientist of Informatics and management»

Vitok G. Zgoda

V.N. Orekhovich Scientific research institute of biomedical chemistry

head of laboratory of systems biology

Ekaterina A. Dibrova

RHANA medical corporation

Ph.D. in economics, president

References

  1. Li H., Shen L., Hu P., Huang R., Cao Y., Deng J., Yuan W., Liu D., Yang J., Gu H., Bai Y. Aging-associated mitochondrial DNA mutations alter oxidative phosphorylation machinery and cause mitochondrial dysfunctions. Biochim. Biophys. Acta. 2017;1863(9):2266-73.
  2. Hoppel C.L., Lesnefsky E.J., Chen Q., Tandler B. Mitochondrial Dysfunction in Cardiovascular Aging. Adv. Exp. Med. Biol. 2017;982:451-64.
  3. Минушкин О.Н., Масловский Л.В., Елизаветина Г.А., Иванова О.И., Калинин А.В. Применение препарата Лаеннек в гастроэнтерологической практике, Эффективная фармакотерапия. Гастроэнтерология. 2014;3. [Minushkin O.N., Maslovsky L.V., Elizavetina G.A., Ivanova O.I., Kalinin A.V. Application of Laennec medicament in gastroenterological practice. Effective pharmacotherapy. Gastroenterology. 2014;3.]
  4. Громова О.А., Торшин И.Ю., Гилельс А.В., Диброва Е.А., Гришина Т.Р., Волков А.Ю., Лиманова О.А., Назаренко О.А., Калачева А.Г., Демидов В.И. Препараты плаценты человека: фундаментальные и клинические исследования. Врач. 2014;4:67-72. [Gromova O.A., Torshin I.Ju., Gilels A.V., Dibrova E.A., Grishina T.R., Volkov A.Ju., Limanova O.A., Nazarenko O.A., Kalachyova A.G., Demidov V.I. Medical products from human placenta: fundamental and clinical researches. Doctor. 2014;4:67-72.]
  5. Торшин И.Ю., Згода В.Г., Громова О.А., Баранов И.И., Демидов В.И., Назаренко О.А., Сотникова Н.Ю. Анализ легкой пептидной фракции Лаеннека методами современной протеомики. Фармакокинетика и фармакодинамика. 2016; 4:42-53. [Torshin I.Ju., Zgoda V.G., Gromova O.A., Baranov I.I., Demidov V.I., Nazarenko O.A., Sotnikova N.Ju. Analysis of the light peptide fraction of Laennec by modern proteomics methods. Pharmacokinetics and pharmacodynamics. 2016;4:42-53.]
  6. Torshin I.Yu., Rudakov K.V. On metric spaces arising during formalization of problems of recognition and classification. Part 2: Density properties. Pattern Recognition and Image Analysis. 2016;26(3):483-96.
  7. Torshin I.Yu., Rudakov K.V. Combinatorial analysis of the solvability properties of the problems of recognition and completeness of algorithmic models. Part 1: Factorization approach. Pattern Recognition and Image Analysis. 2017;27(1):16-28.
  8. Mirica S.N., Duicu O.M., Trancota S.L., Fira-Mladinescu O., Angoulvant D., Muntean D.M. Magnesium orotate elicits acute cardioprotection at reperfusion in isolated and in vivo rat hearts. Can. J. Physiol. Pharmacol. 2013;91(2):108-15.
  9. Sileikyte J., Petronilli V., Zulian A., Dabbeni-Sala F., Tognon G., Nikolov P., Bernardi P., Ricchelli F. Regulation of the inner membrane mitochondrial permeability transition by the outer membrane translocator protein (peripheral benzodiazepine receptor). J. Biol. Chem. 2011;286(2):1046-53.
  10. Baines C.P., Kaiser R.A., Purcell N.H., Blair N.S., Osinska H., Hambleton M.A., Brunskill E.W., Sayen M.R., Gottlieb R.A., Dorn G.W., Robbins J., Molkentin J.D. Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature. 2005;434(7033):658-62.
  11. Schinder A.F., Olson E.C., Spitzer N.C., Montal M. Mitochondrial dysfunction is a primary event in glutamate neurotoxicity. J. Neurosci. 1996;16(19):6125-33.
  12. La Piana G., Gorgoglione V., Laraspata D., Marzulli D., Lofrumento N.E. Effect of magnesium ions on the activity of the cytosolic NADH/cytochrome c electron transport system. FEBS J. 2008;275(24):6168-79.
  13. Zhang Y., Dong Y., Xu Z., Xie Z. Propofol and magnesium attenuate isoflurane-induced caspase-3 activation via inhibiting mitochondrial permeability transition pore. Med. Gas. Res. 2012;2(1):20.
  14. Torshin I.Yu. Sensing the change from molecular genetics to personalized medicine. Nova Biomedical Books, NY, USA, 2009.
  15. Reed J.C., Zha H., Aime-Sempe C., Takayama S., Wang H.G. Structure-function analysis of Bcl-2 family proteins. Regulators of programmed cell death. Adv. Exp. Med. Biol. 1996;406:99-112.
  16. De Zio D., Maiani E., Cecconi F. Apaf1 in embryonic development - shaping life by death, and more. Int. J. Dev. Biol. 2015;59(1-3):33-9.
  17. Feng W., Huang S., Wu H., Zhang M. Molecular basis of Bcl-xL's target recognition versatility revealed by the structure of Bcl-xL in complex with the BH3 domain of Beclin-1. J. Mol. Biol. 2007;372(1):223-35.
  18. Plevin M.J., Mills M.M., Ikura M. The LxxLL motif: a multifunctional binding sequence in transcriptional regulation. Trends Biochem. Sci. 2005;30(2):66-9.
  19. Gaikwad A.B., Viswanad B., Ramarao P. PPAR gamma agonists partially restores hyperglycemia induced aggravation of vascular dysfunction to angiotensin II in thoracic aorta isolated from rats with insulin resistance. Pharmacol. Res. 2007;55(5):400-7.
  20. Cree M.G., Newcomer B.R., Herndon D.N., Qian T., Sun D., Morio B., Zwetsloot J.J., Dohm G.L., Fram R.Y., Mlcak R.P., Aarsland A., Wolfe R.R. PPAR-alpha agonism improves whole body and muscle mitochondrial fat oxidation, but does not alter intracellular fat concentrations in burn trauma children in a randomized controlled trial. Nutr. Metab. (Lond) 2007;4:9.
  21. McCormack S., Polyak E., Ostrovsky J., Dingley S.D., Rao M., Kwon Y.J., Xiao R., Zhang Z., Nakamaru-Ogiso E., Falk M.J. Pharmacologic targeting of sirtuin and PPAR signaling improves longevity and mitochondrial physiology in respiratory chain complex I mutant Caenorhabditis elegans. Mitochondrion. 2015;22:45-59.
  22. Wu J.S., Lin T.N., Wu K.K. Rosiglitazone and PPAR-gamma overexpression protect mitochondrial membrane potential and prevent apoptosis by upregulating anti-apoptotic Bcl-2 family proteins. J. Cell Physiol. 2009;220(1):58-71.
  23. Mogha A., Benesh A.E., Patra C., Engel F.B., Schoneberg T., Liebscher I., Monk K.R. Gpr126 functions in Schwann cells to control differentiation and myelination via G-protein activation. J. Neurosci. 2013;33(46):17976-85.
  24. Wilde C., Fischer L., Lede V., Kirchberger J., Rothemund S., Schoneberg T., Liebscher I. The constitutive activity of the adhesion GPCR GPR114/ADGRG5 is mediated by its tethered agonist. FASEB J. 2016;30(2):666-73.
  25. Yang S.H., Sharrocks A.D., Whitmarsh A.J. MAP kinase signalling cascades and transcriptional regulation. Gene. 2013;513(1):1-13.
  26. Mendoza M.C., Er E.E., Blenis J. The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation. Trends Biochem. Sci. 2011;36(6):320-8
  27. Burkhard K., Shapiro P. Use of inhibitors in the study of MAP kinases. Methods Mol. Biol. 2010;661:107-22.
  28. Cook S.J., Stuart K., Gilley R., Sale M.J. Control of cell death and mitochondrial fission by ERK1/2 MAP Kinase signalling. FEBS J. 2017 May 26. doi: 10.1111/febs.14122.
  29. Gan X., Huang S., Wu L., Wang Y., Hu G., Li G., Zhang H., Yu H., Swerdlow R.H., Chen J.X., Yan S.S. Inhibition of ERK-DLP1 signaling and mitochondrial division alleviates mitochondrial dysfunction in Alzheimer’s disease cybrid cell. Biochim. Biophys. Acta. 2014;1842(2):220-31.
  30. Lu T.H., Hsieh S.Y., Yen C.C., Wu H.C., Chen K.L., Hung D.Z., Chen C.H., Wu C.C., Su Y.C., Chen Y.W., Liu S.H., Huang C.F. Involvement of oxidative stress-mediated ERK1/2 and p38 activation regulated mitochondria-dependent apoptotic signals in methylmercury-induced neuronal cell injury. Toxicol. Lett. 2011;204(1):71-80.
  31. Cantin G.T., Yi W., Lu B., Park S.K., Xu T., Lee J.D., Yates J.R. 3rd. Combining protein-based IMAC, peptide-based IMAC, and MudPIT for efficient phosphoproteomic analysis. J. Proteome Res. 2008;7(3):1346-51.
  32. Dephoure N., Zhou C., Villen J., Beausoleil S.A., Bakalarski C.E., Elledge S.J., Gygi S.P. A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci U S A. 2008;105(31):10762-7.
  33. Zhou H., Di Palma S., Preisinger C., Peng M., Polat A.N., Heck A.J., Mohammed S. Toward a comprehensive characterization of a human cancer cell phosphoproteome. J. Proteome Res. 2013;12(1):260-71.
  34. Langlais P., Wang C., Dong L.Q., Carroll C.A., Weintraub S.T., Liu F. Phosphorylation of Grb10 by mitogen-activated protein kinase: identification of Ser150 and Ser476 of human Grb10zeta as major phosphorylation sites. Biochemistry. 2005;44(24):8890-7.
  35. Pandey P.K., Udayakumar T.S., Lin X., Sharma D., Shapiro P.S., Fondell J.D. Activation of TRAP/mediator subunit TRAP220/ Med1 is regulated by mitogen-activated protein kinase-dependent phosphorylation. Mol. Cell Biol. 2005;25(24):10695-710.
  36. McCoy C.E., Campbell D.G., Deak M., Bloomberg G.B., Arthur J.S. MSK1 activity is controlled by multiple phosphorylation sites. Biochem. J. 2005;387(Pt 2):507-17.
  37. Verma G., Bhatia H., Datta M. JNK1/2 regulates ER-mitochondrial Ca2+ cross-talk during IL-1beta-mediated cell death in RINm5F and human primary beta-cells. Mol. Biol. Cell. 2013;24(12):2058-71.
  38. Liu X.H., Pan L.L., Gong Q.H., Zhu Y.Z. Antiapoptotic effect of novel compound from Herba leonuri - leonurine (SCM-198): a mechanism through inhibition of mitochondria dysfunction in H9c2 cells. Curr. Pharm. Biotechnol. 2010;11(8):895-905.
  39. Bian Y., Song C., Cheng K., Dong M., Wang F., Huang J., Sun D., Wang L., Ye M., Zou H. An enzyme assisted RP-RPLC approach for in-depth analysis of human liver phosphoproteome. J. Proteomics. 2014;96:253-62.
  40. Ford J., Ahmed S., Allison S., Jiang M., Milner J. JNK2-dependent regulation of SIRT1 protein stability. Cell Cycle. 2008;7(19):3091-7.
  41. Sasaki T., Maier B., Koclega K.D., Chruszcz M., Gluba W., Stukenberg P.T., Minor W., Scrable H. Phosphorylation regulates SIRT1 function. PLoS One. 2008;3(12):e4020.
  42. Sumara G., Formentini I., Collins S., Sumara I., Windak R., Bodenmiller B., Ramracheya R., Caille D., Jiang H., Platt K.A., Meda P., Aebersold R., Rorsman P., Ricci R. Regulation of PKD by the MAPK p38delta in insulin secretion and glucose homeostasis. Cell. 2009;136(2):235-48.
  43. Park B., Je Y.T., Chun K.H. Akt is translocated to the mitochondria during etoposide-induced apoptosis of HeLa cells. Mol. Med. Rep. 2015;12(5):7577-81.
  44. Yuan Y., Wang Y., Hu F.F., Jiang C.Y., Zhang Y.J., Yang J.L., Zhao S.W., Gu J.H., Liu X.Z., Bian J.C., Liu Z.P. Cadmium Activates Reactive Oxygen Species-dependent AKT/mTOR and Mitochondrial Apoptotic Pathways in Neuronal Cells. Biomed. Environ. Sci. 2016;29(2):1 17-26.
  45. Ребров В.Г., Громова О.А. Витамины, макро- и микроэлементы. М., ГеоТарМед, 2008. 958 с. [Rebrov V.G., Gromova O.A. Vitamins, macro- and microelements. M., GeoTarMed, 2008. P. 958.]
  46. Yang J.Y., Yeh H.Y., Lin K., Wang P.H. Insulin stimulates Akt translocation to mitochondria: implications on dysregulation of mitochondrial oxidative phosphorylation in diabetic myocardium. J Mol Cell Cardiol. 2009;46(6):919-26.
  47. Bijur G.N., Jope R.S. Rapid accumulation of Akt in mitochondria following phosphatidylinositol 3-kinase activation. J. Neurochem. 2003;87(6):1427-35.
  48. Chae Y.C., Vaira V., Caino M.C., Tang H.Y., Seo J.H., Kossenkov A.V., Ottobrini L., Martelli C., Lucignani G., Bertolini I., Locatelli M., Bryant K.G., Ghosh J.C., Lisanti S., Ku B., Bosari S., Languino L.R., Speicher D.W., Altieri D.C. Mitochondrial Akt Regulation of Hypoxic Tumor Reprogramming. Cancer Cell. 2016;30(2):257-72.
  49. Simonyan L., Renault T.T., Novais M.J., Sousa M.J., Côrte-Real M., Camougrand N., Gonzalez C., Manon S. Regulation of Bax/mitochondria interaction by AKT. FEBS Lett. 2016;590(1):13-21.
  50. Oltvai Z.N., Milliman C.L., Korsmeyer S.J. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell. 1993;74(4):609-19.
  51. Kato M., Wynn R.M., Chuang J.L., Tso S.C., Machius M., Li J., Chuang D.T. Structural basis for inactivation of the human pyruvate dehydrogenase complex by phosphorylation: role of disordered phosphorylation loops. Structure. 2008;16(12):1849-59.
  52. Korotchkina L.G., Patel M.S. Mutagenesis studies of the phosphorylation sites of recombinant human pyruvate dehydrogenase. Site-specific regulation. J. Biol. Chem. 1995;270(24):14297-304.
  53. Kato M., Li J., Chuang J.L., Chuang D.T. Distinct structural mechanisms for inhibition of pyruvate dehydrogenase kinase isoforms by AZD7545, dichloroacetate, and radicicol. Structure. 2007;15(8):992-1004.
  54. Korotchkina L.G., Patel M.S. Site specificity of four pyruvate dehydrogenase kinase isoenzymes toward the three phosphorylation sites of human pyruvate dehydrogenase. J. Biol. Chem. 2001;276(40):37223-9.
  55. Kim J.E., Chen J., Lou Z. DBC1 is a negative regulator of SIRT1. Nature. 2008;451(7178):583-6.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies