Drug-induced hyperuricemia/gout. Part 2: certain medicines, the use of which is associated with an increased risk of developing of these diseases


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

An increase of uric acid (UA) concentration in the blood serum is an important risk factor of cardiovascular pathology, as well as kidney disease. This article presents the results of the analysis and systematization of literature data on drugs of various classes (anti-tuberculosis, cytotoxic drugs, salicylates, etc.), which are associated with the risks of drug-induced hyperuricemia (HU) and gout. Diuretics is a common group of antihypertensive drugs and one of the leading causes of secondary hyperuricemia. The incidence of HU and gout varies between different classes of diuretics and is more commonly associated with loop diuretics than thiazide or thiazide-like diuretics. Among all diuretics, indapamide is associate with fewer cases of serum UA increase in comparison with other diuretics. Among all indapamide formulations available on the market, outstands Indap 2,5 mg tablet, which can be divided into 4 parts and thus provide the possibility to individually adjust the dose and improve the safety of treatment

Full Text

Restricted Access

About the authors

Anton P. Pereverzev

Russian Medical Academy of Continuous Professional Education of the Ministry of Healthcare of Russia

Email: acchirurg@mail.ru
PhD, associate professor of the Department of therapy and polymorbid pathology

Olga D. Ostroumova

Russian Medical Academy of Continuous Professional Education of the Ministry of Healthcare of Russia; I.M. Sechenov First Moscow State Medical University of the Ministry of Healthcare of Russia (Sechenov University)

Email: ostroumova.olga@mail.ru
MD, professor, head of the Department of therapy and polymorbid pathology; professor of the Department of clinical pharmacology and propedeutics of internal diseases

References

  1. Клинические рекомендации. Артериальная гипертензия у взрослых. Общероссийская общественная организация «Российское кардиологическое общество». 2020. ID: КР62. Доступ: https://cr.minzdrav.gov.ru/schema/62_2 (дата обращения - 01.09.2021)
  2. Елисеева М.Е., Елисеев М.С. Гиперурикемия как фактор риска развития патологии почек и перспективы уратснижающей терапии. Эффективная фармакотерапия. 2019; 23: 26-30. doi: https://doi.org/10.33978/2307-3586-2019-15-23-26-30.
  3. Клинические рекомендации. Подагра. Ассоциация ревматологов России. 2018. ID:251. Доступ: https://cr.minzdrav.gov.ru/schema/251_1 (дата обращения - 01.09.2021)
  4. Pham A.Q., Doan A., Andersen M. Pyrazinamide-induced hyperuricemia. P. T. 2014; 39(10): 695-715.
  5. Enomoto A., Kimura H., Chairoungdua A. et al. Molecular identification of a renal urate anion exchanger that regulates blood urate levels. Nature. 2002; 417(6887): 447-52. doi: 10.1038/nature742.
  6. Mandal A.K., Mount D.B. The molecular physiology of uric acid homeostasis. Annu Rev Physiol. 2015; 77: 323-45. doi: 10.1146/ annurev-physiol-021113-170343.
  7. Sato M., Mamada H., Anzai N. et al. Renal secretion of uric acid by organic anion transporter 2 (OAT2/SLC22A7) in human. Biol Pharm Bull. 2010; 33(3): 498-503. doi: 10.1248/bpb.33.498.
  8. Bahn A., Hagos Y., Reuter S. et al. Identification of a new urate and high affinity nicotinate transporter, hOAT10 (SLC22A13). J. Biol Chem. 2008; 283(24): 16332-41. doi: 10.1074/jbc.M800737200.
  9. Gerdan V., Akkoc N., Ucan E.S., Bulac Kir S. Paradoxical increase in uric acid level with allopurinol use in pyrazinamide-induced hyperuricaemia. Singapore Med J. 2013; 54(6): e125-26. doi: 10.11622/smedj.2013097.
  10. Tisdale J.E., Miller D.A. Drug induced diseases: Prevention, detection, and management. 3rd Ed. Bethesda, Md.: American Society of Health-System Pharmacists. 2018; 1399 рр.
  11. Lacroix C., Guyonnaud C., Chaou M. et al. Interaction between allopurinol and pyrazinamide. Eur Respir J. 1988; 1(9): 807-11.
  12. Narang R.K., Agarwal M.C., Raina A.K. et al. Hyperuricaemia induced by ethambutol. Br J. Dis Chest. 1983; 77(4): 403-06.
  13. Khanna B.K. Acute gouty arthritis following ethambutol therapy. Br J. Dis Chest. 1980; 74(4): 409-10.
  14. Khanna B.K., Gupta V.P., Singh M.P. Ethambutol-induced hyperuricaemia. Tubercle. 1984; 65(3): 195-99. doi: 10.1016/0041-3879(84)90075-8.
  15. Postlethwaite A.E., Bartel A.G., Kelley W.N. Hyperuricemia due to ethambutol. N. Engl J. Med. 1972; 286(14): 761-62. doi: 10.1056/ NEJM197204062861407.
  16. Postlethwaite A.E., Kelley W.N. Studies on the mechanism of ethambutol-induced hyperuricemia. Arthritis Rheum. 1972; 15(4): 403-09. doi: 10.1002/art.1780150411.
  17. Stamp L., Searle M., O'Donnell J., Chapman P. Gout in solid organ transplantation: a challenging clinical problem. Drugs. 2005; 65(18): 2593-611. doi: 10.2165/00003495-200565180-00004.
  18. Mazzali M. Uric acid and transplantation. Semin Nephrol. 2005; 25(1): 50-55. doi: 10.1016/j.semnephrol.2004.09.008.
  19. Cohen M.R., Cohen E.P. Enthesopathy and atypical gouty arthritis following renal transplantation: a case control study. Rev Rhum Engl Ed. 1995; 62(2): 86-90.
  20. Baethge B.A., Work J., Landreneau M.D., McDonald J.C. Tophaceous gout in patients with renal transplants treated with cyclosporine A. J. Rheumatol. 1993; 20(4): 718-20.
  21. Burack D.A., Griffith B.P., Thompson M.E., Kahl L.E. Hyperuricemia and gout among heart transplant recipients receiving cyclosporine. Am J. Med. 1992; 92(2): 141-46. doi: 10.1016/0002-9343(92)90104-j.
  22. Lin H.Y., Rocher L.L., McQuillan M.A. et al. Cyclosporine-induced hyperuricemia and gout. N. Engl J. Med. 1989; 321(5): 287-92. doi: 10.1056/NEJM198908033210504.
  23. Marcen R., Gallego N., Orofino L. et al. Impairment of tubular secretion of urate in renal transplant patients on cyclosporine. Nephron. 1995; 70(3): 307-13. doi: 10.1159/000188609.
  24. Hansen J.M., Fogh-Andersen N., Leyssac P.P., Strandgaard S. Glomerular and tubular function in renal transplant patients treated with and without ciclosporin A. Nephron. 1998; 80(4): 450-57. doi: 10.1159/000045219.
  25. Kanbay M., Akcay A., Huddam B. et al. Influence of cyclosporine and tacrolimus on serum uric acid levels in stable kidney transplant recipients. Transplant Proc. 2005; 37(7): 3119-20. doi: 10.1016/j.transproceed.2005.08.042.
  26. Uslu Gokceoglu A., Akman S., Koyun M. et al. Hyperuricemia in pediatric renal transplant recipients. Exp Clin Transplant. 2013; 11(6): 489-93. doi: 10.6002/ect.2013.0012.
  27. Balal M., Paydas S., Sertdemir Y. et al. Effects of cyclosporine and tacrolimus on maintenance therapy after renal transplantation. Adv Ther. 2004; 21(3): 186-94. doi: 10.1007/BF02850124.
  28. Clive D.M. Renal transplant-associated hyperuricemia and gout. J. Am Soc Nephrol. 2000; 11(5): 974-79. doi: 10.1681/ASN.V115974.
  29. Hoyer P.F., Lee I.J., Oemar B.S. et al. Renal handling of uric acid under cyclosporin A treatment. Pediatr Nephrol. 1988; 2(1): 18-21. doi: 10.1007/BF00870373.
  30. Laine J., Holmberg C. Mechanisms of hyperuricemia in cyclosporine-treated renal transplanted children. Nephron. 1996; 74(2): 318-23. doi: 10.1159/000189328.
  31. Guo H.B. Acute allograft renal failure with marked hyperuricemia developing during mizoribine administration: a case report with review of the literature. Transplant Proc. 2010; 42(7): 2804-07. doi: 10.1016/j.transproceed.2010.05.148.
  32. Yoshioka K., Ohashi Y., Sakai T. et al. A multicenter trial of mizoribine compared with placebo in children with frequently relapsing nephrotic syndrome. Kidney Int. 2000; 58(1): 317-24. doi: 10.1046/j.1523-1755.2000.00168.x.
  33. Mazali F.C., Johnson R.J., Mazzali M. Use of uric acid-lowering agents limits experimental cyclosporine nephropathy. Nephron Exp Nephrol. 2012; 120(1): e12-19. doi: 10.1159/000330274.
  34. Kei A., Elisaf M.S. Nicotinic acid: clinical considerations. Expert Opin Drug Saf. 2012; 11(4): 551-64. doi: 10.1517/14740338.2012.682981.
  35. Gaut Z.N., Pocelinko R., Solomon H.M., Thomas G.B. Oral glucose tolerance, plasma insulin, and uric acid excretion in man during chronic administration of nicotinic acid. Metabolism. 1971; 20(11): 1031-35. doi: 10.1016/0026-0495(71)90026-6.
  36. Gershon S.L., Fox I.H. Pharmacologic effects of nicotinic acid on human purine metabolism. J. Lab Clin Med. 1974; 84(2): 179-86.
  37. Kelley W.N. Effects of drugs on uric acid in man. Annu Rev Pharmacol. 1975; 15: 327-50. doi: 10.1146/annurev.pa.15.040175.001551.
  38. Ben Salem C., Slim R., Fathallah N., Hmouda H. Drug-induced hyperuricaemia and gout. Rheumatology. 2017; 56(5): 679-88. doi: 10.1093/rheumatology/kew293.
  39. Bose P., Qubaiah O. A review of tumour lysis syndrome with targeted therapies and the role of rasburicase. J. Clin Pharm Ther. 2011; 36(3): 299-326. doi: 10.1111/j.1365-2710.2011.01260.x.
  40. Wilson F.P., Berns J.S. Tumor lysis syndrome: new challenges and recent advances. Adv Chronic Kidney Dis. 2014; 21(1): 18-26. doi: 10.1053/j.ackd.2013.07.001.
  41. Choi H.K., Willett W., Curhan G. Fructose-rich beverages and risk of gout in women. JAMA. 2010; 304(20): 2270-78. doi: 10.1001/ jama.2010.1638.
  42. MacFarlane L.A., Kim S.C. Gout: a review of nonmodifiable and modifiable risk factors. Rheum Dis Clin North Am. 2014; 40(4): 581-604. doi: 10.1016/j.rdc.2014.07.002.
  43. Lecoultre V., Egli L., Theytaz F. et al. Fructose-induced hyperuricemia is associated with a decreased renal uric acid excretion in humans. Diabetes Care. 2013; 36(9): e149-50. doi: 10.2337/dc13-0866.
  44. Peaston M.J. Dangers of intravenous fructose. Lancet. 1973; 1(7797): 266. doi: 10.1016/s0140-6736(73)90109-8.
  45. Raivio K.O., Becker A., Meyer L.J. et al. Stimulation of human purine synthesis de novo by fructose infusion. Metabolism. 1975; 24(7): 861-69. doi: 10.1016/0026-0495(75)90133-x.
  46. Sahebjami H., Scalettar R. Effects of fructose infusion on lactate and uric acid metabolism. Lancet. 1971; 1(7695): 366-69. doi: 10.1016/s0140-6736(71)92208-2.
  47. Dalbeth N., House M.E., Gamble G.D. et al. Population-specific influence of SLC2A9 genotype on the acute hyperuricaemic response to a fructose load. Ann Rheum Dis. 2013; 72(11): 1868-73. doi: 10.1136/annrheumdis-2012-202732.
  48. Dalbeth N., House M.E., Gamble G.D. et al. Population-specific effects of SLC17A1 genotype on serum urate concentrations and renal excretion of uric acid during a fructose load. Ann Rheum Dis. 2014; 73(1): 313-14. doi: 10.1136/annrheumdis-2013-203767.
  49. Vukovic J., Modun D., Budimir D. et al. Acute, food-induced moderate elevation of plasma uric acid protects against hyperoxia-induced oxidative stress and increase in arterial stiffness in healthy humans. Atherosclerosis. 2009; 207(1): 255-60. doi: 10.1016/j. atherosclerosis.2009.04.012.
  50. Petrie J.L., Patman G.L., Sinha I. et al. The rate of production of uric acid by hepatocytes is a sensitive index of compromised cell ATP homeostasis. Am J. Physiol Endocrinol Metab. 2013; 305(10): E1255-65. doi: 10.1152/ajpendo.00214.2013.
  51. Yamamoto T., Moriwaki Y., Suda M. et al. Xylitol-induced increase in purine degradation: a role of erythrocytes. Int J. Clin Pharmacol Ther Toxicol. 1993; 31(1): 35-39.
  52. Lotito S.B., Frei B. Consumption of flavonoid-rich foods and increased plasma antioxidant capacity in humans: cause, consequence, or epiphenomenon? Free Radic Biol Med. 2006; 41(12): 1727-46. doi: 10.1016/j.freeradbiomed.2006.04.033.
  53. Buijs E.J., van Zuylen H.J. Metabolic consequences of a sorbitol overdose during neurosurgery. J. Neurosurg Anesthesiol. 1997; 9(1): 17-20. doi: 10.1097/00008506-199701000-00006.
  54. Ichai C., Orban J.C., Fontaine E. Sodium lactate for fluid resuscitation: the preferred solution for the coming decades? Crit Care. 2014; 18(4): 163. doi: 10.1186/cc13973.
  55. Yamamoto T., Moriwaki Y., Takahashi S. et al. Effect of lactate infusion on renal transport of purine bases and oxypurinol. Nephron. 1993; 65(1): 73-76. doi: 10.1159/000187444.
  56. Burch R.E., Kurke N. The effect of lactate infusion on serum uric acid. Proc Soc Exp Biol Med. 1968; 127(1): 17-20. doi: 10.3181/00379727-127-32610.
  57. Kurahashi H., Watanabe M., Sugimoto M. et al. Testosterone replacement elevates the serum uric acid levels in patients with female to male gender identity disorder. Endocr J. 2013; 60(12): 1321-27. doi: 10.1507/endocrj.ej13-0203.
  58. Pui K., Waddell C., Dalbeth N. Early onset of hyperuricaemia and gout following treatment for female to male gender reassignment. Rheumatology (Oxford). 2008; 47(12): 1840-41. doi: 10.1093/rheumatology/ken391.
  59. Yahyaoui R., Esteva I., Haro-Mora J.J. et al. Effect of long-term administration of cross-sex hormone therapy on serum and urinary uric acid in transsexual persons. J. Clin Endocrinol Metab. 2008; 93(6): 2230-33. doi: 10.1210/jc.2007-2467.
  60. Hosoyamada M., Takiue Y., Shibasaki T., Saito H. The effect of testosterone upon the urate reabsorptive transport system in mouse kidney. Nucleosides Nucleotides Nucleic Acids. 2010; 29(7): 574-79. doi: 10.1080/15257770.2010.494651.
  61. Caspi D., Lubart E., Graff E. et al. The effect of mini-dose aspirin on renal function and uric acid handling in elderly patients. Arthritis Rheum. 2000; 43(1):103-08. doi: 10.1002/1529-0131(200001)43:1<103::AID-ANR13>3.0.CO;2-C.
  62. Ohtsu N., Anzai N., Fukutomi T. et al. [Human renal urate transpoter URAT1 mediates the transport of salicylate]. Nihon Jinzo Gakkai Shi. 2010; 52(4): 499-504.
  63. El-Sheikh A.A., van den Heuvel J.J., Koenderink J.B., Russel F.G. Effect of hypouricaemic and hyperuricaemic drugs on the renal urate efflux transporter, multidrug resistance protein 4. Br J. Pharmacol. 2008; 155(7): 1066-75. doi: 10.1038/bjp.2008.343.
  64. Zhang Y., Neogi T., Chen C. et al. Low-dose aspirin use and recurrent gout attacks. Ann Rheum Dis. 2014; 73(2): 385-90. doi: 10.1136/ annrheumdis-2012-202589.
  65. Choi H.K., Soriano L.C., Zhang Y., Rodriguez L.A. Antihypertensive drugs and risk of incident gout among patients with hypertension: population based case-control study. BMJ. 2012; 344: d8190. doi: 10.1136/bmj.d8190.
  66. Bruderer S., Bodmer M., Jick S.S., Meier C.R. Use of diuretics and risk of incident gout: a population-based case-control study. Arthritis Rheumatol. 2014; 66(1): 185-96. doi: 10.1002/art.38203. Erratum in: Arthritis Rheumatol. 2014; 66(2): 427.
  67. Langford H.G., Blaufox M.D., Borhani N.O. et al. Is thiazide-produced uric acid elevation harmful? Analysis of data from the Hypertension Detection and Follow-up Program. Arch Intern Med. 1987; 147(4): 645-49. doi: 10.1001/archinte.147.4.645.
  68. Palmer B.F. Metabolic complications associated with use of diuretics. Semin Nephrol. 2011; 31(6): 542-52. doi: 10.1016/j. semnephrol.2011.09.009.
  69. Handler J. Managing hypertensive patients with gout who take thiazide. J. Clin Hypertens (Greenwich). 2010; 12(9): 731-35. doi: 10.1111/j.1751-7176.2010.00346.x.
  70. Reyes A.J. Cardiovascular drugs and serum uric acid. Cardiovasc Drugs Ther. 2003; 17(5-6): 397-414. doi: 10.1023/b:card.0000015855.02485.e3.
  71. Sica D.A. Diuretic-related side effects: Development and treatment. «Medscape» [Electronic resource]. URL: https://www.medscape.com/viewarticle/489521_7 (date of access - 01.09.2021).
  72. McMahon F.G. Management of essential hypertension: The once-a-day era, 3rd ed. Chapter VI: Diuretics. Pp. 297-378. Mount Kisco, N.Y: Futura Publishing Company, Inc. 1990: 684.
  73. Weidmann P. Metabolic profile of indapamide sustained-release in patients with hypertension: data from three randomised doubleblind studies. Drug Saf. 2001; 24(15): 1155-65. doi: 10.2165/00002018-200124150-00006.
  74. Medical Research Council trial of treatment of hypertension in older adults: principal results. MRC Working Party. BMJ. 1992; 304(6824): 405-12. doi: 10.1136/bmj.304.6824.405.
  75. Franse L.V., Pahor M., Di Bari M. et al. Serum uric acid, diuretic treatment and risk of cardiovascular events in the Systolic Hypertension in the Elderly Program (SHEP). J. Hypertens. 2000; 18(8): 1149-54. doi: 10.1097/00004872-200018080-00021.
  76. Jutabha P., Anzai N., Wempe M.F. et al. Apical voltage-driven urate efflux transporter NPT4 in renal proximal tubule. Nucleosides Nucleotides Nucleic Acids. 2011 Dec;30(12):1302-11. https://doi.org/10.1080/15257770.2011.616564.
  77. Hagos Y., Stein D., Ugele B. et al. Human renal organic anion transporter 4 operates as an asymmetric urate transporter. J. Am Soc Nephrol. 2007; 18(2): 430-39. doi: 10.1681/ASN.2006040415.
  78. McAdams-DeMarco M.A., Maynard J.W., Baer A.N. et al. A urate gene-by-diuretic interaction and gout risk in participants with hypertension: results from the ARIC study. Ann Rheum Dis. 2013; 72(5): 701-06. doi: 10.1136/annrheumdis-2011-201186.
  79. Steele T.H. Evidence for altered renal urate reabsorption during changes in volume of the extracellular fluid. J. Lab Clin Med. 1969; 74(2): 288-99.
  80. Palmer B.F. Metabolic complications associated with use of diuretics. Semin Nephrol. 2011; 31(6): 542-52. doi: 10.1016/j. semnephrol.2011.09.009.
  81. Daskalopoulou S.S., Tzovaras V., Mikhailidis D.P., Elisaf M. Effect on serum uric acid levels of drugs prescribed for indications other than treating hyperuricaemia. Curr Pharm Des. 2005; 11(32): 4161-75. doi: 10.2174/138161205774913309.
  82. Falch D.K., Schreiner A. The effect of spironolactone on lipid, glucose and uric acid levels in blood during long-term administration to hypertensives. Acta Med Scand. 1983; 213(1): 27-30. doi: 10.1111/j.0954-6820.1983.tb03684.x.
  83. abrera S.E., Edwards N.C., Steeds R.P. et al. Spironolactone increases serum uric acid levels in patients with chronic kidney disease. J. Hum Hypertens. 2014; 28(3): 210-11. doi: 10.1038/jhh.2013.66.
  84. Roos J.C., Boer P., Peuker K.H., Dorhout Mees E.J. Changes in intrarenal uric acid handling during chronic spironolactone treatment in patients with essential hypertension. Nephron. 1982; 32(3): b209-13. doi: 10.1159/000182847.
  85. Waller P.C., Ramsay L.E. Predicting acute gout in diuretic-treated hypertensive patients. J. Hum Hypertens. 1989; 3(6): 457-61.
  86. Hunter D.J., York M., Chaisson C.E. et al. Recent diuretic use and the risk of recurrent gout attacks: the online case-crossover gout study. J. Rheumatol. 2006; 33(7): 1341-45.
  87. Musini V.M., Nazer M., Bassett K., Wright J.M. Blood pressure-lowering efficacy of monotherapy with thiazide diuretics for primary hypertension. Cochrane Database Syst Rev. 2014; 5: CD003824. doi: 10.1002/14651858.CD003824.pub2.
  88. Plante G.E., Robillard C. Indapamide in the treatment of essential arterial hypertension: results of a controlled study. Curr Med Res Opin. 1983; 8(Suppl 3): 59-66. doi: 10.1185/03007998309109837.
  89. Reilly R.F., Peixoto A.J., Desir G.V. The evidence-based use of thiazide diuretics in hypertension and nephrolithiasis. CJASN. 2010; 5(10): 1893-903. doi: 10.2215/CJN.04670510.
  90. Kuo S.W., Pei-Dee, Hung Y.J. et al. Effect of indapamide SR in the treatment of hypertensive patients with type 2 diabetes. Am J. Hypertens. 2003; 16(8): 623-28. doi: 10.1016/s0895-7061(03)00896-3.
  91. onnelly R., Molyneaux L.M., Willey K.A. et al. Comparative effects of indapamide and captopril on blood pressure and albumin excretion rate in diabetic microalbuminuria. The American Journal of Cardiology. 1996; 77(6): B26-B30. doi: 10.1016/s0002-9149(97)89237-5.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies