Возможности комбинированной гиполипидемической терапии смешанной атерогенной дислипидемии

  • Авторы: Боева О.И.1, Кокорин В.А.2, Хрипунова А.А.3
  • Учреждения:
    1. ФГБУ ДПО «Центральная государственная медицинская академия» Управления делами Президента РФ
    2. ФГАОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России
    3. ФГБОУ ВО «Ставропольский государственный медицинский университет» Минздрава России
  • Выпуск: Том 8, № 1 (2022)
  • Страницы: 162-173
  • Раздел: Статьи
  • URL: https://journals.eco-vector.com/2412-4036/article/view/288780
  • DOI: https://doi.org/10.18565/therapy.2022.1.162-173
  • ID: 288780

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Сочетание повышения холестерина липопротеидов низкой плотности (ХС ЛНП) и триглицеридов (ТГ) в плазме крови с пониженным уровнем холестерина липопротеидов высокой плотности (ХС ЛВП) - нередкий вариант дислипидемии. Терапия статинами эффективно снижает уровень ХС ЛНП, но не всегда достаточна для оптимизации общего липидного профиля, что создает основу для формирования остаточного сердечно-сосудистого риска. Проведен анализ данных доступной литературы о степени эффективности и безопасности комбинации статинов и производных фиброевой кислоты в коррекции смешанной дислипидемии и профилактике сердечно-сосудистого риска.

Полный текст

Доступ закрыт

Об авторах

Ольга Игоревна Боева

ФГБУ ДПО «Центральная государственная медицинская академия» Управления делами Президента РФ

Email: box0271@mail.ru
д.м.н., доцент, профессор кафедры терапии, кардиологии и функциональной диагностики с курсом нефрологии Москва

Валентин Александрович Кокорин

ФГАОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России

Email: valentinkokorin@yahoo.com
д.м.н., доцент, профессор кафедры госпитальной терапии имени академика П.Е. Лукомского лечебного факультета Москва

Алеся Александровна Хрипунова

ФГБОУ ВО «Ставропольский государственный медицинский университет» Минздрава России

Email: fktcz2007@yandex.ru
к.м.н., доцент, доцент кафедры общественного здоровья и здравоохранения, медицинской профилактики и информатики с курсом ДПО Москва

Список литературы

  1. Boekholdt S.M., Hovingh G.K., Mora S. et al. Very low levels of atherogenic lipoproteins and the risk for cardiovascular events: a meta-analysis of statin trials. J Am Coll Cardiol. 2014; 64(5): 485-94. https://dx.doi.org/10.1016/j.jacc.2014.02.615.
  2. Mach F., Baigent C., Catapano A.L. с соавт. 2019. Рекомендации ESC/EAS по лечению дислипидемий: модификация липидов для снижения сердечно-сосудистого риска. Российский кардиологический журнал. 2020; 5: 3826. [Mach F., Baigent C., Catapano A.L. et al. 2019. ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Rossiyskiy kardiologicheskiy zhurnal = Russian Journal of Cardiology. 2020; 5: 3826 (In Russ.)]. https://dx.doi.org/10.15829/1560-4071-2020-3826.
  3. Reiner Z. Managing the residual cardiovascular disease risk associated with HDL-cholesterol and triglycerides in statin-treated patients: A clinical update. Nutr Metab Cardiovasc Dis. 2013; 23(9): 799-807. https://dx.doi.org/10.1016/j.numecd.2013.05.002.
  4. Karpov Y., Khomitskaya Y. PROMETHEUS: An observational, cross-sectional, retrospective study of hypertriglyceridemia in Russia. Cardiovasc Diabetol. 2015; 14: 115. https://dx.doi.org/10.1186/s12933-015-0268-2.
  5. 5. Emerging Risk Factors Collaboration, Di Angelantonio E., Gao P., Pennells L. et al. Lipid-related markers and cardiovascular disease prediction. JAMA. 2012; 307(23): 2499-506. https://dx.doi.org/10.1007/s10654-007-9165-7.
  6. Triglyceride Coronary Disease Genetics Consortium, Emerging Risk Factors Collaboration, Sarwar N., Sandhu M.S., Ricketts S.L. et al. Triglyceride-mediated pathways and coronary disease: collaborative analysis of 101 studies. Lancet. 2010; 375(9726): 1634-39. https://dx.doi.org/10.1016/S0140-6736(10)60545-4.
  7. Varbo A., Benn M., Tybjaerg-Hansen A. et al. Remnant cholesterol as a causal risk factor for ischemic heart disease. J Am Coll Cardiol. 2013; 61(4): 427-36. https://dx.doi.org/10.1016/j.jacc.2012.08.1026.
  8. Lewis G.F., Xiao C., Hegele R.A. Hypertriglyceridemia in the genomic era: A new paradigm. Endocr Rev. 2015; 36(1): 131-47. https://dx.doi.org/10.1210/er.2014-1062.
  9. Dron J.S., Hegele R.A.Complexity of mechanisms among human proprotein convertase subtilisin-kexin type 9 variants. Curr Opin Lipidol. 2017; 28(2): 161-69. https://dx.doi.org/10.1097/M0L.0000000000000386.
  10. Silverman M.G., Ference B.A., Im K. et al. Association between lowering LDL-C and cardiovascular risk reduction among different therapeutic interventions: A systematic review and meta-analysis. JAMA. 2016; 316(12): 1289-97. https://dx.doi.org/10.1001/jama.2016.13985.
  11. Lincoff A.M., Nicholls S.J., Riesmeyer J.S. et al; ACCELERATE Investigators. Evacetrapib and cardiovascular outcomes in high-risk vascular disease. N Engl J Med. 2017; 376(20): 1933-42. https://dx.doi.org/10.1056/NEJMoa1609581.
  12. HPS/TIMI/REVEAL Collaborative Group, Bowman L., Hopewell J.C., Chen F. et al. Effects of anacetrapib in patients with atherosclerotic vascular disease. N Engl J Med. 2017; 377(13): 1217-27. https://dx.doi.org/10.1056/NEJMoa1706444.
  13. Group HTC, Landray M.J., Haynes R., Hopewell J.C. et al. Effects of extended-release niacin with laropiprant in high-risk patients. N Engl J Med. 2014; 371(3): 203-12. https://dx.doi.org/10.1056/NEJMoa1300955.
  14. Sathiyakumar V., Park J., Golozar A. et al. Fasting versus nonfasting and low-density lipoprotein cholesterol accuracy. Circulation. 2018; 137(1): 10-19. https://dx.doi.org/10.1161/CIRCULATI0NAHA.117.030677.
  15. Sniderman A.D., Islam S., Yusuf S., McQueen M.J. Discordance analysis of apolipoprotein B and non-high density lipoprotein cholesterol as markers of cardiovascular risk in the INTERHEART study. Atherosclerosis. 2012; 225(2): 444-49. https://dx.doi.org/10.1016/j.atherosclerosis.2012.08.039.
  16. Mark L., Vallejo-Vaz A.J., Reiber I. et al. Non-HDL cholesterol goal attainment and its relationship with triglyceride concentrations among diabetic subjects with cardiovascular disease: a nationwide survey of 2674 individuals in Hungary. Atherosclerosis. 2015; 241(1): 62-68. https://dx.doi.org/10.1016/j.atherosclerosis.2015.04.810.
  17. Scott R., O'Brien R., Fulcher G. et al; Fenofibrate Intervention Event Lowering in Diabetes (FIELD) Study Investigators. Effects of fenofibrate treatment on cardiovascular disease risk in 9,795 individuals with type 2 diabetes and various components of the metabolic syndrome: the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) study. Diabetes Care. 2009; 32(3): 493-98. https://dx.doi.org/10.2337/dc08-1543.
  18. Huffman K.M., Hawk V.H., Henes S.T. et al. Exercise effects on lipids in persons with varying dietary patterns - does diet matter if they exercise? Responses in studies of a targeted risk reduction intervention through defined exercise I. Am Heart J. 2012; 164(1): 117-24. https://dx.doi.org/10.1016/j.ahj.2012.04.014.
  19. Brien S.E., Ronksley P.E., Turner B.J. et al. Effect of alcohol consumption on biological markers associated with risk of coronary heart disease: Systematic review and meta-analysis of interventional studies. BMJ. 2011; 342: d636. https://dx.doi.org/10.1136/bmj.d636.
  20. Taskinen M.R., Soderlund S., Bogl L.H. et al. Adverse effects of fructose on cardiometabolic risk factors and hepatic lipid metabolism in subjects with abdominal obesity. J Intern Med. 2017; 282(2): 187-201. https://dx.doi.org/10.1111/joim.12632.
  21. Riccardi G., Vaccaro O., Costabile G., Rivellese A.A. How well can we control dyslipidemias through lifestyle modifications? Curr Cardiol Rep. 2016; 18(7): 66. https://dx.doi.org/10.1007/s11886-016-0744-7.
  22. Sharma A., Joshi P.H., Rinehart S. et al. Baseline very low-density lipoprotein cholesterol is associated with the magnitude of triglyceride lowering on statins, fenofibric acid, or their combination in patients with mixed dyslipidemia. J Cardiovasc Transl Res. 2014; 7(4): 465-74. https://dx.doi.org/10.1007/s12265-014-9559-3.
  23. Barter P.J., Brandrup-Wognsen G., Palmer M.K., Nicholls S.J. Effect of statins on HDL-C: A complex process unrelated to changes in LDL-C: Analysis of the VOYAGER Database. J Lipid Res. 2010; 51(6): 1546-53. https://dx.doi.org/10.1194/jlr.P002816.
  24. Tsimikas S., Witztum J.L., Miller E.R. et al; Myocardial Ischemia Reduction with Aggressive Cholesterol Lowering (MIRACL) Study Investigators. High-dose atorvastatin reduces total plasma levels of oxidized phospholipids and immune complexes present on apolipoprotein B-100 in patients with acute coronary syndromes in the MIRACL trial. Circulation. 2004; 110(11): 1406-12. https://dx.doi.org/10.1161/01.CIR.0000141728.23033.B5.
  25. Khera A.V., Everett B.M., Caulfield M.P. et al. Lipoprotein(a) concentrations, rosuvastatin therapy, and residual vascular risk: an analysis from the JUPITER Trial (Justification for the Use of Statins in Prevention: an Intervention Trial Evaluating Rosuvastatin). Circulation. 2014; 129(6): 635-42. https://dx.doi.org/10.1161/CIRCULATI0NAHA.113.004406.
  26. Cholesterol Treatment Trialists Collaboration, Baigent C., Blackwell L., Emberson J. et al. Efficacy and safety of more intensive lowering of LDL cholesterol: a metaanalysis of data from 170,000 participants in 26 randomised trials. Lancet. 2010; 376(9753): 1670-81. https://dx.doi.org/10.1016/S0140-6736(10)61350-5.
  27. American Diabetes Association. 9. Cardiovascular disease and risk management: standards of medical care in diabetes - 2018. Diabetes Care. 2018; 41(Suppl 1): S86-S104. https://dx.doi.org/10.2337/dc18-S009.
  28. Lee S.H., Cho K.I., Kim J.Y. et al. Non-lipid effects of rosuvastatin-fenofibrate combination therapy in high-risk Asian patients with mixed hyperlipidemia. Atherosclerosis. 2012; 221(1): 169-75. https://dx.doi.org/10.1016/j.atherosclerosis.2011.12.042.
  29. Mcgovern M.E. Taking aim at HDL-C: Raising levels to reduce cardiovascular risk. Postgrad Med. 2005; 117(4): 29-30, 33-35, 39 passim. https://dx.doi.org/10.3810/pgm.2005.04.1610.
  30. Wander G.S., Hukkeri M.Y.K., Yalagudri S. et al. Rosuvastatin: role in secondary prevention of cardiovascular disease. J Assoc Physicians India. 2018; 66(3): 70-74
  31. Maki K.C., Guyton J.R., Orringer C.E. et al. Triglyceride-lowering therapies reduce cardiovascular disease event risk in subjects with hypertriglyceridemia. J Clin Lipidol. 2016; 10(4): 905-14. https://dx.doi.org/10.1016/j.jacl.2016.03.008.
  32. Bhatt D.L., Steg P.G., Miller M. et al; REDUCE-IT Investigators. Cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia. N Engl J Med. 2019; 380(1): 11-22. https://dx.doi.org/10.1056/NEJMoa1812792.
  33. Manson J.E., Cook N.R., Lee I.M. et al; VITAL Research Group. Marine n-3 fatty acids and prevention of cardiovascular disease and cancer. N Engl J Med. 2019; 380(1): 23-32. https://dx.doi.org/10.1056/NEJMoa1811403.
  34. Kei A., Tellis C., Liberopoulos E. et al. Effect of switch to the highest dose of rosuvastatin versus add-on-statin fenofibrate versus add-on-statin nicotinic acid/laropiprant on oxidative stress markers in patients with mixed dyslipidemia. Cardiovasc Ther. 2014; 32(4): 139-46. https://dx.doi.org/10.1111/1755-5922.12072.
  35. Makariou S.E., Liberopoulos E.N., Agouridis A.P. et al. Effect of rosuvastatin monotherapy and in combination with fenofibrate or omega-3 fatty acids on serum vitamin D levels. J Cardiovasc Pharmacol Ther. 2012; 17(4): 382-86. https://dx.doi.org/10.1177/1074248412439470.
  36. Tziomalos K., Athyros V.G. Fenofibrate: A novel formulation (Triglide?) in the treatment of lipid disorders: a review.Int J Nanomedicine. 2006; 1(2): 129-47. https://dx.doi.org/10.2147/nano.2006.1.2.129.
  37. Feher M.D., Caslake M., Foxton J. et al. Atherogenic lipoprotein phenotype in type 2 diabetes: Reversal with micronised fenofibrate. Diabetes Metab Res Rev. 1999; 15(6): 395-99. https://dx.doi.org/10.1002/(sici)1520-7560(199911/12)15:6<395::a id-dmrr65>3.0.co;2-n.
  38. Backes J.M., Gibson C.A., Ruisinger J.F., Moriarty P.M. Fibrates: What have we learned in the past 40 years? Pharmacotherapy. 2007; 27(3): 412-24. https://dx.doi.org/10.1592/phco.27.3.412.
  39. ACCORD Study Group, Ginsberg H.N., Elam M.B., Lovato L.C. et al. Effects of combination lipid therapy in type 2 diabetes mellitus. N Engl J Med. 2010; 362(17): 1563-74. https://dx.doi.org/10.1056/NEJMoa1006524.
  40. Keech A., Simes R.J., Barter P. et al; FIELD study investigators. Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet. 2005; 366(9500): 1849-61. https://dx.doi.org/10.1016/S0140-6736(05)67667-2.
  41. Davidson M.H., Armani A., McKenney J.M., Jacobson T.A. Safety considerations with fibrate therapy. Am J Cardiol. 2007; 99(6A): 3C-18C. https://dx.doi.org/10.1016/j.amjcard.2006.11.016.
  42. Graham D.J., Staffa J.A., Shatin D. et al. Incidence of hospitalized rhabdomyolysis in patients treated with lipid-lowering drugs. JAMA. 2004; 292(21): 2585-90. https://dx.doi.org/10.1001/jama.292.21.2585.
  43. Grundy S.M., Vega G.L., Yuan Z. et al. Effectiveness and tolerability of simvastatin plus fenofibrate for combined hyperlipidemia (the SAFARI trial). Am J Cardiol. 2005; 95(4): 462-68. https://dx.doi.org/10.1016/j.amjcard.2004.10.012. Erratum in: Am J Cardiol. 2006; 98(3): 427-28. https://dx.doi.org/10.1016/j.amjcard.2004.10.012.
  44. Preiss D., Tikkanen M.J., Welsh P. et al. Lipidmodifying therapies and risk of pancreatitis: A meta-analysis. JAMA. 2012; 308(8): 804-11. https://dx.doi.org/10.1001/jama.2012.8439.
  45. Taskinen M.R., Sullivan D.R., Ehnholm C. et al; FIELD study investigators. Relationships of HDL cholesterol, ApoA-I, and ApoA-II with homocysteine and creatinine in patients with type 2 diabetes treated with fenofibrate. Arterioscler Thromb Vasc Biol. 2009; 29(6): 950-55. https://dx.doi.org/10.1161/ATVBAHA.108.178228.
  46. Frick M.H., Elo O., Haapa K. et al. Helsinki Heart Study: primary-prevention trial with gemfibrozil in middle-aged men with dyslipidemia. Safety of treatment, changes in risk factors, and incidence of coronary heart disease. N Engl J Med. 1987; 317(20): 1237-45. https://dx.doi.org/10.1056/NEJM198711123172001.
  47. Rubins H.B., Robins S.J., Collins D. et al. Gemfibrozil for the secondary prevention of coronary heart disease in men with low levels of high-density lipoprotein cholesterol. Veterans Affairs High-Density Lipoprotein Cholesterol Intervention Trial Study Group. N Engl J Med. 1999; 341(6): 410-18. https://dx.doi.org/10.1056/NEJM199908053410604.
  48. Lipids and lipoproteins in symptomatic coronary heart disease. Distribution, intercorrelations, and significance for risk classification in 6,700 men and 1,500 women. The Bezafibrate Infarction Prevention (BIP) Study Group, Israel. Circulation. 1992; 86(3): 839-48. https://dx.doi.org/10.1161/01.cir.86.3.839.
  49. Meade T., Zuhrie R., Cook C., Cooper J. Bezafibrate in men with lower extremity arterial disease: Randomised controlled trial. BMJ. 2002; 325(7373): 1139. https://dx.doi.org/10.1136/bmj.325.7373.1139.
  50. Elam M.B., Ginsberg H.N., Lovato L.C. et al; ACCORDION Study Investigators. Association of fenofibrate therapy with long-term cardiovascular risk in statin-treated patients with type 2 diabetes. JAMA Cardiol. 2017; 2(4): 370-80. https://dx.doi.org/10.1001/jamacardio.2016.4828.
  51. Bruckert E., Labreuche J., Deplanque D. et al. Fibrates effect on cardiovascular risk is greater in patients with high triglyceride levels or atherogenic dyslipidemia profile: A systematic review and meta-analysis. J Cardiovasc Pharmacol. 2011; 57(2): 267-72. https://dx.doi.org/10.1097/FJC.0b013e318202709f.
  52. Jun M., Zhu B., Tonelli M. et al. Effects of fibrates in kidney disease: a systematic review and meta-analysis. J Am Coll Cardiol. 2012; 60(20): 2061-71. https://dx.doi.org/10.1016Zj.jacc.2012.07.049.
  53. Lee M., Saver J.L., Towfighi A. et al. Efficacy of fibrates for cardio-vascular risk reduction in persons with atherogenic dyslipidemia: a meta-analysis. Atherosclerosis. 2011; 217(2): 492-98. https://dx.doi.org/10.1016/j.atherosclerosis.2011.04.020.
  54. Tenenbaum A., Medvedofsky D., Fisman E.Z. et al. Cardiovascular events in patients received combined fibrate/ statin treatment versus statin monotherapy: Acute Coronary Syndrome Israeli Surveys data. PLoS One. 2012; 7(4): e35298. https://dx.doi.org/10.1371/journal.pone.0035298.
  55. Pradhan A.D., Paynter N.P., Everett B.M. et al. Rationale and design of the Pemafibrate to Reduce Cardiovascular Outcomes by Reducing Triglycerides in Patients with Diabetes (PROMINENT) study. Am Heart J. 2018; 206: 80-93. https://dx.doi.org/10.1016/j.ahj.2018.09.011.
  56. Регистр лекарственных средств России. Фенофибрат (Fenofibratum). Доступ: https://www.rlsnet.ru/mnn_index_id_853.htm (дата обращения - 11.01.2022). [Register of Medicinal Products of Russia. Fenofibratum. URL: https://www.rlsnet.ru/mnn_index_id_853.htm (date of access - 11.01.2022) (In Russ.)].
  57. Аметов А.С., Прудникова М.А. Нелипидные эффекты фенофибрата: акцент на сахарный диабет. Сахарный диабет. 2014; 4: 43-50. [Ametov A.S., Prudnikova M.A. Pleiotropic effects of fenofibrate: focus on type 2 diabetes mellitus. Sakharnyy diabet = Diabetes Mellitus. 2014; 4: 43-50 (In Russ.)]. https://dx.doi.org/10.14341/DM2014443-50.
  58. Goto M. A comparative study of anti-inflammatory and antidyslipidemic effects of fenofibrate and statins on rheumatoid arthritis. Mod Rheumatol. 2010; 20(3): 238-43. https://dx.doi.org/10.1007/s10165-009-0261-2.
  59. Jun M., Bin Zhu B., Tonelli M. et al. Effects of fibrates in kidney disease. A systematic review and meta-analysis. J Am Coll Cardiol. 2012; 60(20): 2061-71. https://dx.doi.org/10.1016/j.jacc.2012.07.049.
  60. Ferdinand K.C., Davidson M.H., Kelly M.T., Setze C.M. One-year efficacy and safety of rosuvastatin + fenofibric acid combination therapy in patients with mixed dyslipidemia: Evaluation of dose-response. Am J Cardiovasc Drugs. 2012; 12(2): 117-25. https://dx.doi.org/10.2165/11597940-000000000-00000.
  61. Jones P.H., Davidson M.H., Stein E.A. et al.Comparison of the efficacy and safety of rosuvastatin versus atorvastatin, simvastatin, and pravastatin across doses (STELLAR**STELLAR = Statin Therapies for Elevated Lipid Levels compared Across doses to Rosuvastatin. Trial). Am J Cardiol. 2003; 92(2): 152-60. https://dx.doi.org/10.1016/s0002-9149(03)00530-7.
  62. Pepine C.J., Jacobson T.A., Carlson D.M. et al.Combination rosuvastatin plus fenofibric acid in a cohort of patients 65 years or older with mixed dyslipidemia: Subanalysis of two randomized, controlled studies. Clin Cardiol. 2010; 33(10): 609-19. https://dx.doi.org/10.1002/clc.20830.
  63. Zhu T., Awni W.M., Hosmane B. et al. ABT-335, the Choline salt of fenofibric acid, does not have a clinically significant pharmacokinetic interaction with rosuvastatin in humans. J Clin Pharmacol. 2009; 49(1): 63-71. https://dx.doi.org/10.1177/0091270008325671.
  64. Ma L., Ballantyne C.M., Belmont J.W. et al.Interaction between SNPs in the RXRA and near ANGPTL3 gene region inhibits apoB reduction after statin-fenofibric acid therapy in individuals with mixed dyslipidemia. J Lipid Res. 2012; 53(11): 2425-28. https://dx.doi.org/10.1194/jlr.m028829.
  65. Jones P.H., Davidson M.H., Kashyap M.L. et al. Efficacy and safety of ABT-335 (fenofibric acid) in combination with rosuvastatin in patients with mixed dyslipidemia: A phase 3 study. Atherosclerosis. 2009; 204(1): 208-15. https://dx.doi.org/10.1016/j.atherosclerosis.2008.09.027.
  66. Agouridis A.P., Tsimihodimos V., Filippatos T.D. et al. High doses of rosuvastatin are superior to low doses of rosuvastatin plus fenofibrate or n-3 fatty acids in mixed dyslipidemia. Lipids. 2011; 46(6): 521-28. https://dx.doi.org/10.1007/s11745-011-3538-0.
  67. Sattar N., Gaw A., Scherbakova O.et al. Metabolic syndrome with and without C-reactive protein as a predictor of coronary heart disease and diabetes in the West of Scotland Coronary Prevention Study. Circulation. 2003; 108(4): 414-19. https://dx.doi.org/10.1161/01.CIR.0000080897.52664.94.
  68. Pappa E., Rizos C.V., Filippatos T.D., Elisaf M.S. Emerging fixed-dose combination treatments for hyperlipidemia. J Cardiovasc Pharmacol Ther. 2019; 24(4): 315-22. https://dx.doi.org/10.1177/1074248419838506.
  69. Ford E.S., Giles W.H., Dietz W.H. Prevalence of the metabolic syndrome among US adults: Findings from the Third National Health and Nutrition Examination Survey. JAMA. 2002; 287(3): 356-59. https://dx.doi.org/10.1001/jama.287.3.356.
  70. Makariou S., Liberopoulos E.N., Elisaf M., Challa A. Novel roles of vitamin D in disease: What is new in 2011? Eur J Intern Med. 2011; 22(4): 355-62. https://dx.doi.org/10.1016/j.ejim.2011.04.012.
  71. Makariou S.E., Liberopoulos E.N., Agouridis A.P. et al. Effect of rosuvastatin monotherapy and in combination with fenofibrate or omega-3 fatty acids on serum vitamin D levels. J Cardiovasc Pharmacol Ther. 2012; 17(4): 382-86. https://dx.doi.org/10.1177/1074248412439470.
  72. Xu Y., Hashizume T., Shuhart M.C. et al.Intestinal and hepatic CYP3A4 catalyze hydroxylation of 1alpha, 25-dihydroxyvitamin D(3): Implications for drug-induced osteomalacia. Mol Pharmacol. 2006; 69(1): 56-65. https://dx.doi.org/10.1124/mol.105.017392.
  73. Guryev O., Carvalho R.A., Usanov S. et al. A pathway for the metabolism of vitamin D3: Unique hydroxylated metabolites formed during catalysis with cytochrome P450scc (CYP11A1). Proc Natl Acad Sci USA. 2003; 100(25): 14754-59. https://dx.doi.org/10.1073/pnas.2336107100.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах