Modern strategies for safety of iron deficiency pharmacotherapy improving

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The article considers strategies for improving the tolerance of oral iron preparations. The main strategy is a decrease of a single dose or a change to the use of drugs with a lower content of elemental iron, an increase in the interval between taking a drug, an intermittent dosing regimen. According to domestic clinical guidelines, it is advisable to use doses of low-range iron preparations. Higher doses potentially increase side effects due to excess unabsorbed iron remaining in the gastrointestinal tract. An opinion is being formed that a single daily dose of 40–60 mg is preferable to reduce undesirable effects and optimize the proportion of absorbed elemental iron. Among divalent compounds, iron sulfate is most often used, the percentage of iron absorption from which is the highest comparatively to other salts of this microelement. Modern dosage forms of ferrous sulfate with modified release have both high bioavailability and good tolerability. Oral iron preparations improve hematological status but also increase oxidative stress even in female patients with low iron stores. Folic acid deficiency contributes to the aggravation of the damaging effects of oxidative stress, as it leads to a decrease of methionine production, which leads to a decrease in the production of natural antioxidants (glutathione) and sulfur-containing amino acids (taurine and cysteine). Intake of iron in combination with folic acid improves the safety of pharmacotherapy by optimizing the activity of the antioxidant system through the regulation of transcription of genes associated with oxidative stress in liver, the activity of Fe2+ ion carriers (DMT1) and ZRT/IRT.

Full Text

Restricted Access

About the authors

Evgenia V. Shikh

I.M. Sechenov First Moscow State Medical University of the Ministry of Healthcare of Russia (Sechenov University)

Author for correspondence.
Email: shikh_e_v@staff.sechenov.ru
ORCID iD: 0000-0001-6589-7654

MD, Professor, Head of the Department of Clinical Pharmacology and Propaedeutics of Internal Diseases

Russian Federation, Moscow

Anna A. Makhova

I.M. Sechenov First Moscow State Medical University of the Ministry of Healthcare of Russia (Sechenov University)

Email: makhova_a_a@staff.sechenov.ru
ORCID iD: 0000-0001-9817-9886

MD, Associate Professor of the Department of Clinical Pharmacology and Propaedeutics of Internal Diseases

Russian Federation, Moscow

Elizaveta V. Krasnoperova

I.M. Sechenov First Moscow State Medical University of the Ministry of Healthcare of Russia (Sechenov University)

Email: krasnoperova_e_v@student.sechenov.ru
ORCID iD: 0000-0002-6673-5822

Student

Russian Federation, Moscow

References

  1. Ших Е.В., Махова А.А., Перков А.В. с соавт. Пищевое ферментированное «железо Коджи»: технологии производства, безопасность, особенности фармакокинетики. Вопросы гинекологии, акушерства и перинатологии. 2023; 22(1): 116–121. [Shikh E.V. Makhova A.A., Perkov A.V. et al. Food fermented Koji iron: Manufacturing techniques, safety, pharmacokinetic characteristics. Voprosy ginekologii, akusherstva i perinatologii = Gynecology, Obstetrics and Perinatology. 2023; 22(1): 116–121 (In Russ.)]. https://dx.doi.org/10.20953/1726-1678-2023-1-116-121. EDN: NQCTRI.
  2. Осипян Е.Э., Ших Е.В., Дроздов В.Н. Технологии пролонгированного высвобождения: влияние на эффективность и безопасность препаратов железа. Вопросы гинекологии, акушерства и перинатологии. 2019; 18(3): 149–155. [Osipyan E.E., Shikh E.V., Drozdov V.N. Prolonged-release technologies: influence on the efficacy and safety of iron formulations. Voprosy ginekologii, akusherstva i perinatologii = Gynecology, Obstetrics and Perinatology. 2019; 18(3): 149–155 (In Russ.)]. https://dx.doi.org/10.20953/1726-1678-2019-3-149-155. EDN: NDGKGR.
  3. Juarez-Vazquez J., Bonizzoni E., Scotti A. Iron plus folate is more effective than iron alone in the treatment of iron deficiency anaemia in pregnancy: A randomised, double blind clinical trial. BJOG. 2002; 109(9): 1009–14. https://dx.doi.org/10.1111/j.1471-0528.2002.01378.x.
  4. URL: https://srhr.org/rhl/article/who-recommendation-on-daily-oral-iron-and-folic-acid-supplementation-1 (date of access – 01.06.2023).
  5. Cancelo-Hidalgo M.J., Castelo-Branco C., Palacios S. et al. Tolerability of different oral iron supplements: a systematic review. Curr Med Res Opin. 2013; 29(4): 291–303. https://dx.doi.org/10.1185/03007995.2012.761599.
  6. Круглов Д.С. Лекарственные средства, применяемые для профилактики и лечения железодефицитных состояний. Научное обозрение. Медицинские науки. 2017; (4): 26–41. [Kruglov D.S. The medicines employed for prevention and cure iron deficiency status. Nauchnoye obozreniye. Meditsinskiye nauki = Scientific review. Medical sciences. 2017; (4): 26–41 (In Russ.)]. EDN: YFVOAP.
  7. Клинические рекомендации. Железодефицитная анемия. Национальное гематологическое общество, Национальное общество детских гематологов, онкологов. Рубрикатор клинических рекомендаций Минздрава России. 2021. ID: 669. Доступ: https://cr.minzdrav.gov.ru/schema/669_1 (дата обращения – 01.06.2023). [Clinical guidelines. Iron-deficiency anemia. National Hematological Society, National Society of Pediatric Hematologists, Oncologists. Rubricator of clinical guidelines of the Ministry of Healthcare of Russia. 2021. ID: 669. URL: https://cr.minzdrav.gov.ru/schema/669_1 (date of access – 01.06.2023) (In Russ.)].
  8. Hathcock J.N., Griffiths J.C. Vitamin and mineral safety. Council for Responsible Nutrition (CRN). 3rd edition. Ed. by MacKay D., Wong A., Nguyen H. URL: https://www.crnusa.org/sites/default/files/files/resources/CRN-SafetyBook-3rdEdition-2014-fullbook.pdf (date of access – 01.04.2023).
  9. Pavord S., Daru J., Prasannan N. et al. UK guidelines on the management of iron deficiency in pregnancy. Br J Haematol. 2020; 188(6): 819–30. https://dx.doi.org/10.1111/bjh.16221.
  10. Stoffel N.U., Zeder C., Brittenham G.M. et al. Iron absorption from supplements is greater with alternate day than with consecutive day dosing in iron-deficient anemic women. Haematologica. 2020; 105(5): 1232–39. https://dx.doi.org/10.3324/haematol.2019.220830.
  11. Rimon E., Kagansky N., Kagansky M. et al. Are we giving too much iron? Low-dose iron therapy is effective in octogenarians. Am J Med. 2005; 118(10): 1142–47. https://dx.doi.org/10.1016/j.amjmed.2005.01.065.
  12. Moretti D., Goede J., Zeder C. et al. Oral iron supplements increase hepcidin and decrease iron absorption from daily or twice-daily doses in iron-depleted young women. Blood. 2015; 126(17): 1981–89. https://dx.doi.org/10.1182/blood-2015-05-642223.
  13. Ruegg P. When less is really more/ETH Zurich. URL: https://www.ethz.ch/en/news.../iron-supplementation.htm (date of access – 01.04.2023).
  14. Suliburska J., Skrypnik K., Chmurzynska A. Folic acid affects iron status in female rats with deficiency of these micronutrients. Biol Trace Elem Res. 2020; 195(2): 551–58. https://dx.doi.org/10.1007/s12011-019-01888-z.
  15. Qiao Y., He H., Zhang Z. et al. Long-term sodium ferulate supplementation scavenges oxygen radicals and reverses liver damage induced by iron overloading. Molecules. 2016; 21(9): 1219. https://dx.doi.org/10.3390/molecules21091219.
  16. Xia M.F., Bian H., Zhu X.P. et al. Serum folic acid levels are associated with the presence and severity of liver steatosis in Chinese adults. Clin Nutr. 2018; 37(5): 1752–58. https://dx.doi.org/10.1016/j.clnu.2017.06.021.
  17. Sarna L.K., Wu N., Wang P. et al. Folic acid supplementation attenuates high fat diet induced hepatic oxidative stress via regulation of NADPH oxidase. Can J Physiol Pharmacol. 2012; 90(2): 155–65. https://dx.doi.org/10.1139/y11-124.
  18. King S.M., Donangelo C.M., Knutson M.D. et al. Daily supplementation with iron increases lipid peroxidation in young women with low iron stores. Exp Biol Med (Maywood). 2008; 233(6): 701–7. https://dx.doi.org/10.3181/0708-RM-233.
  19. Tiwari A.K., Mahdi A.A., Chandyan S. et al. Oral iron supplementation leads to oxidative imbalance in anemic women: A prospective study. Clin Nutr. 2011; 30(2): 188–93. https://dx.doi.org/10.1016/j.clnu.2010.08.001.
  20. Tiwari A.K.M., Mahdi A.A., Mishra S. Assessment of liver function in pregnant anemic women upon oral iron and folic acid supplementation. J Gynecol Obstet Hum Reprod. 2018; 47(2): 45–49. https://dx.doi.org/10.1016/j.jogoh.2017.11.010.
  21. Wahyuwibowo J., Aziz A., Safitri E. et al. Iron-folate supplementation during pregnancy for prevent oxidative stress in pregnant rats: Level of MDA, creatinine, glucose, erythrocite, blood pressure, body weight and number of offspring. Pharmacog J. 2020; 12(1): 186–91. https://dx.doi.org/10.5530/pj.2020.12.28.
  22. Francisqueti F.V., Chiaverini L.C., Santos K.C. et al. The role of oxidative stress on the pathophysiology of metabolic syndrome. Rev Assoc Med Bras (1992). 2017; 63(1): 85–91. https://dx.doi.org/10.1590/1806-9282.63.01.85.
  23. Sid V., Wu N., Sarna L.K. et al. Folic acid supplementation during high-fat diet feeding restores AMPK activation via an AMP-LKB1-dependent mechanism. Am J Physiol Integr Comp Physiol. 2015; 309(10): R1215–25. https://dx.doi.org/10.1152/ajpregu.00260.2015.
  24. Nam H., Wang C.Y., Zhang L. et al. ZIP14 and DMT1 in the liver, pancreas, and heart are differentially regulated by iron deficiency and overload: Implications for tissue ironuptake in iron-related disorders. Haematologica. 2013; 98(7): 1049–57. https://dx.doi.org/10.3324/haematol.2012.072314.
  25. Lane D.J., Bae D.H., Merlot A.M. et al. Duodenal cytochrome B (DCYTB) in iron metabolism: An update on function and regulation. Nutrients. 2015; 7(4): 2274–96. https://dx.doi.org/10.3390/nu7042274.
  26. Eady J.J., Wormstone Y.M., Heaton S.J. et al. Differential effects of basolateral and apical iron supply on iron transport in Caco-2 cells. Genes Nutr. 2015; 10(3): 463. https://dx.doi.org/10.1007/s12263-015-0463-5.
  27. Лебедев В.В., Демихов В.Г., Дмитриев А.В. с соавт. Сравнительная эффективность и безопасность применения препаратов двух- и трехвалентного железа для лечения железодефицитной анемии. Вопросы гематологии/онкологии и иммунопатологии в педиатрии. 2016; 15(4): 5–12. [Lebedev V.V., Demikhov V.G., Dmitriev A.V. et al. A comparative efficacy and safety of using ferrous and ferric iron preparations for management of iron-deficiency anaemia. Voprosy gematologii/onkologii i immunopatologii v pediatrii = Pediatric Haematology/Oncology and Immunopathology. 2016; 15(4): 5–12. https://dx.doi.org/10.20953/1726-1708-2016-4-5-12. EDN: YIJLCZ.
  28. Ших Е.В., Махова А.А. Клинико-фармакологические подходы к выбору препарата для профилактики и лечения железодефицита во время беременности. Фармакология и фармакотерапия. 2021; (4): 20–27. [Shikh E.V., Makhova A.A. Clinical and pharmacological approaches to the choice of a drug for prevention and treatment of iron deficiency during pregnancy. Farmakologiya i farmakoterapiya = Pharmacology and Pharmacotherapy. 2021; (4): 20–27 (In Russ.)]. https://dx.doi.org/10.46393/2713-2129_2021_4_20_26. EDN: FNCKTI.
  29. Liwei J.I.N., Huangyun Q., Xiangqin G. Effect of sodium alginate type on drug release from chitosan-sodium alginate-based in situ film-forming tablets. AAPS PharmSciTech. 2020; 21(2): 55. https://dx.doi.org/10.1208/s12249-019-1549-y.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure

Download (81KB)

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies