Expert consensus: diagnosis of osteoporosis and sarcopenia in elderly and senile patients (abridged version)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

As a person is aging, he is getting a progressive decline in bone mineral density, muscle mass, and strength, which is predisposing to the risk of osteoporosis and sarcopenia. Osteoporosis could be characterized by low bone mass and bone microarchitecture deterioration, while sarcopenia represents loss of muscle mass, strength, and function. Consequences for an individual suffering from both conditions together include an increased risk of falls, fractures, frequent hospitalizations and a high risk of death. Of particular interest in the current situation is a new method for diagnosing osteoporosis – radiofrequency echographic multispectrometry (REMS), which has a number of advantages, such as safety due to the absence of radiation exposure and portability, as well as relatively low cost. Presented consensus describes epidemiology, clinical consequences, and current methods for diagnosing osteoporosis and sarcopenia in the elderly.

Full Text

Restricted Access

About the authors

Natalya V. Sharashkina

Russian Gerontology Research and Clinical Center of N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia

Author for correspondence.
Email: sharashkina@inbox.ru
ORCID iD: 0000-0002-6465-4842

PhD in Medical Sciences, head of the Laboratory of general geriatrics of Russian Gerontological Research and Clinical Center, N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia

Russian Federation, Moscow

Anton V. Naumov

Russian Gerontology Research and Clinical Center of N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia

Email: naumov_av@rgnkc.ru
ORCID iD: 0000-0002-6253-621X

MD, head of the Laboratory of musculoskeletal system pathology of Russian Gerontological Research and Clinical Center, N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia

Russian Federation, Moscow

Ekaterina N. Dudinskaya

Russian Gerontology Research and Clinical Center of N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia

Email: dudinskaya_en@rgnkc.ru
ORCID iD: 0000-0001-7891-6850

MD, head of the Laboratory of age-related metabolic and endocrine disorders of Russian Gerontological Research and Clinical Center, N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia

Russian Federation, Moscow

Natalya O. Khovasova

Russian Gerontology Research and Clinical Center of N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia

Email: khovasova_no@rgnkc.ru
ORCID iD: 0000-0002-3066-4866

PhD in Medical Sciences, researcher at the Laboratory of musculoskeletal system pathology of Russian Gerontological Research and Clinical Center, N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia

Russian Federation, Moscow

Linda G. Tokareva

Russian Gerontology Research and Clinical Center of N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia

Email: tokareva_lg@rgnkc.ru
ORCID iD: 0009-0002-0832-6585

researcher at the Laboratory of musculoskeletal system pathology of Russian Gerontological Research and Clinical Center, N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia

Russian Federation, Moscow

Alina R. Polyanskaya

Russian Gerontology Research and Clinical Center of N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia

Email: polyanskaya_ar@rgnkc.ru
ORCID iD: 0000-0003-3606-0315

researcher of the Laboratory of musculoskeletal system pathology of Russian Gerontological Research and Clinical Center, N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia

Russian Federation, Moscow

Yulia S. Onuchina

Russian Gerontology Research and Clinical Center of N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia

Email: onuchina_ys@rgnkc.ru
ORCID iD: 0000-0002-0556-1697

PhD in Medical Sciences, researcher at the Laboratory of age-related metabolic and endocrine disorders of Russian Gerontological Research and Clinical Center, N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia

Russian Federation, Moscow

Mikhail Y. Lysenkov

Russian Gerontology Research and Clinical Center of N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia

Email: lysenkov_mu@rgnkc.ru
ORCID iD: 0009-0004-2638-8063

doctor at the Department of radiology of Russian Gerontological Research and Clinical Center, N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia

Russian Federation, Moscow

Dmitry V. Demenok

Russian Gerontology Research and Clinical Center of N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia

Email: demenok_dv@rgnkc.ru
ORCID iD: 0000-0002-9837-4224

head of the Department of radiation diagnostics of Russian Gerontological Research and Clinical Center, N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia

Russian Federation, Moscow

Anastasia V. Sorokina

Russian Gerontology Research and Clinical Center of N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia

Email: sorokina_av@rgnkc.ru
ORCID iD: 0009-0003-4697-4417

researcher at the Laboratory of musculoskeletal system pathology of Russian Gerontological Research and Clinical Center, N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia

Russian Federation, Moscow

Nadezhda K. Runikhina

Russian Gerontology Research and Clinical Center of N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia

Email: nkrunihina@rgnkc.ru
ORCID iD: 0000-0001-5272-0454

MD, deputy director of Russian Gerontological Research and Clinical Center, N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia

Russian Federation, Moscow

Olga N. Tkacheva

Russian Gerontology Research and Clinical Center of N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia

Email: tkacheva@rgnkc.ru
ORCID iD: 0000-0002-4193-688X

MD, professor, corresponding member of RAS, director of Russian Gerontological Research and Clinical Center, N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia

Russian Federation, Moscow

References

  1. Лесняк О.М. Остеопороз: руководство для врачей. М.: ГЭОТАР-Медиа. 2016; 464 с. [Lesnyak O.M. Osteoporosis: A guide for physicians. Moscow: GEOTAR-Media. 2016; 464 pp. (In Russ.)]. ISBN: 978-5-9704-3986-9.
  2. International Society for Clinical Densitometry. 2013 official positions – adult. URL: http://www.iscd.org/official-positions/2013-iscd-official-positions-adult (date of access – 01.12.2023).
  3. Hans D., Barthe N., Boutroy S. et al. Correlations between trabecular bone score, measured using anteroposterior dual-energy X-ray absorptiometry acquisition, and 3-dimensional parameters of bone microarchitecture: An experimental study on human cadaver vertebrae. J Clin Densitom. 2011; 14(3): 302–12. https://dx.doi.org/10.1016/j.jocd.2011.05.005.
  4. Kanis J.A., on behalf of the WHO Scientific Group. Assessment of osteoporosis at the primary health-care level. Technical Report. WHO Collaboraiting Centre, University of Sheffield, UK. 2008. URL: https://frax.shef.ac.uk/FRAX/pdfs/WHO_Technical_Report.pdf (date of access – 01.12.2023).
  5. Guglielmi G, de Terlizzi F. Quantitative ultrasound in the assessment of osteoporosis. Eur J Radiol. 2009; 71(3): 425–31. https://dx.doi.org/10.1016/j.ejrad.2008.04.060.
  6. Diez-Perez A., Brandi M.L., Al-Daghri N. et al. Radiofrequency echographic multi spectrometry for the in vivo assessment of bone strength: state of the art – outcomes of an expert consensus meeting organized by the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO). Aging Clin Exp. 2019; 31(10): 1375–89. https://dx.doi.org/10.1007/s40520-019-01294-4.
  7. Cruz-Jentoft A.J., Bahat G., Bauer J. et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing. 2019; 48(4): 16–31. https://dx.doi.org/10.1093/ageing/afz046.
  8. Турушева А.В., Фролова Е.В., Дегриз Я.М. Сравнение результатов измерений, полученных с использованием динамометра ДK-50 и динамометра JAMAR® Plus. Российский семейный врач. 2018; 22(1): 12–17. [Turusheva A.V., Frolova E.V., Degryse J.M. Comparison of measurement results are obtained with dynamometers DK-50 and JAMAR® Plus. Rossiyskiy semeynyy vrach = Russian Family Doctor. 2018; 22(1): 12–17 (In Russ.)]. https://dx.doi.org/10.17816/RFD2018112-17. EDN: YWWRRX.
  9. Ткачева О.Н., Котовская Ю.В., Рунихина Н.К. с соавт. Клинические рекомендации «Старческая астения». Российский журнал гериатрической медицины. 2020; (1): 11–46. [Tkacheva O.N., Kotovskaya Yu.V., Runikhina N.K. et al. Clinical guidelines on frailty. Rossiyskiy zhurnal geriatricheskoy meditsiny = Russian Journal of Geriatric Medicine. 2020; (1): 11–46 (In Russ.)]. https://dx.doi.org/10.37586/2686-8636-1-2020-11-46. EDN: JCMOSK.
  10. Landi F., Onder G., Russo A. et al. Calf circumference, frailty and physical performance among older adults living in the community. Clin Nutr. 2014; 33(3): 539–44. https://dx.doi.org/10.1016/j.clnu.2013.07.013.
  11. Kim K.M., Jang H.C., Lim S. Differences among skeletal muscle mass indices derived from height-, weight-, and body mass index-adjusted models in assessing sarcopenia. Korean J Intern Med. 2016; 31(4): 643–50. https://dx.doi.org/10.3904/kjim.2016.015.
  12. Studenski S.A., Peters K.W., Alley D.E. et al. The FNIH sarcopenia project: Rationale, study description, conference recommendations, and final estimates. J Gerontol A Biol Sci Med Sci. 2014; 69(5): 547–58. https://dx.doi.org/10.1093/gerona/glu010.
  13. Наумов А.В., Деменок Д.В., Онучина Ю.С. с соавт. Инструментальная диагностика остеосаркопении в схемах и таблицах. Российский журнал гериатрической медицины. 2021; (3): 358–364. [Naumov A.V., Demenok D.V., Onuchina Yu.S. et al. Instrumental diagnosis of osteosarcopenia in diagrams and tables. Rossiyskiy zhurnal geriatricheskoy meditsiny = Russian Journal of Geriatric Medicine. 2021; (3): 358–364 (In Russ.)]. https://dx.doi.org/10.37586/2686-8636-3-2021-350-356. EDN: XFQIMU.
  14. Adami G., Arioli G., Bianchi G. et al. Radiofrequency echographic multi spectrometry for the prediction of incident fragility fractures: A 5-year follow-up study. Bone. 2020; 134: 115297. https://dx.doi.org/10.1016/j.bone.2020.115297.
  15. Cortet B., Dennison E., Diez-Perez A. et al. Radiofrequency Echographic Multi Spectrometry (REMS) for the diagnosis of osteoporosis in a European multicenter clinical context. Bone. 2021; 143: 115786. https://dx.doi.org/10.1016/j.bone.2020.115786.
  16. Di Paola M., Gatti D., Viapiana O. et al. Radiofrequency echographic multispectrometry compared with dual X-ray absorptiometry for osteoporosis diagnosis on lumbar spine and femoral neck. Osteoporos Int. 2019; 30(2): 391–402. https://dx.doi.org/10.1007/s00198-018-4686-3.
  17. Pisani P., Greco A., Conversano F. et al. A quantitative ultrasound approach to estimate bone fragility: A first comparison with dual X-ray absorptiometry. Measurement. 2017; 101: 243–49. https://dx.doi.org/10.1016/j.measurement.2016.07.033.
  18. Caffarelli C., Pitinca M.D.T., Francolini V. et al. REMS technique: Future perspectives in an Academic Hospital. Clin Cases Miner Bone Metab. 2018; 15(2): 163–65. https://dx.doi.org/10.11138/ccmbm/2018.15.2.163.
  19. Greco A., Pisani P., Conversano F. et al. Ultrasound fragility score: An innovative approach for the assessment of bone fragility. Measurement. 2017; 101: 236–42. https://dx.doi.org/10.1016/j.measurement.2016.01.033.
  20. Diez-Perez A., Brandi M.L., Al-Daghri N. et al. Radiofrequency echographic multi-spectrometry for the in-vivo assessment of bone strength: state of the art-outcomes of an expert consensus meeting organized by the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO). Aging Clin Exp Res. 2019; 31(10): 1375–89. https://dx.doi.org/10.1007/s40520-019-01294-4.
  21. Drinka P.J., DeSmet A.A., Bauwens S.F., Rogot A. The effect of overlying calcification on lumbar bone densitometry. Calcif Tissue Int. 1992; 50(6): 507–10. https://dx.doi.org/10.1007/BF00582163.
  22. Beck T. Measuring the structural strength of bones with dual-energy X-ray absorptiometry: principles, technical limitations, and future possibilities. Osteoporos Int. 2003; 14(Suppl 5): 81–88. https://dx.doi.org/10.1007/s00198-003-1478-0.
  23. Петряйкин А.В., Низовцова Л.А., Артюкова З.Р. с соавт. Остеоденситометрия: методические рекомендации. Серия «Лучшие практики лучевой и инструментальной диагностики». Вып. 88. 2-е изд., перераб. и доп. М.: ГБУЗ «НПКЦ ДиТ ДЗМ». 2020; 60 с. [Petryaykin A.V., Nizovtsova L.A., Artyukova Z.R. et al. Osteodensitometry: Methodological recommendations. Series «Best practices in radiation and instrumental diagnostics». Vol. 88. 2nd ed., revised. and additional. Moscow: Scientific and Practical Clinical Center for Diagnostics and Telemedicine Technologies of the Department of Healthcare of Moscow. 2020; 60 pp. (In Russ.)].
  24. Schnitzer T.J., Wysocki N., Barkema D. et al. Calcaneal quantitative ultrasound compared with hip and femoral neck dual-energy X-ray absorptiometry in people with a spinal cord injury. PM R. 2012; 4(10): 748–55. https://dx.doi.org/10.1016/j.pmrj.2012.05.011.
  25. Gould H., Brennan S.L., Kotowicz M.A. et al. Total and appendicular lean mass reference ranges for Australian men and women: The Geelong osteoporosis study. Calcif Tissue Int. 2014; 94(4): 363–72. https://dx.doi.org/10.1007/s00223-013-9830-7.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Algorithm for diagnosing sarcopenia [7]

Download (192KB)
3. Fig. 2. Criteria for osteosarcopenia [13]

Download (124KB)
4. Fig. 3. Algorithm for diagnosing osteosarcopenia [13]

Download (133KB)

Copyright (c) 2024 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies