Non-alcoholic fatty liver disease and atherosclerosis: common mechanisms of development and progression


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Non-alcoholic fatty liver disease (NAFLD) is an urgent medical and social problem, representing the most widespread liver disease. Different mechanisms of joint progression of liver fibrosis and atherosclerosis, which determine the development of cardiovascular accidents and adverse liver-related outcomes, have now been identified. Patients with NAFLD with initially significant liver fibrosis or its progression according to the data of dynamic monitoring should be considered as patients with increased cardiovascular risk. The development and optimization of dynamic monitoring protocols by an interdisciplinary team of specialists is of critical importance for this category of patients.

Full Text

Restricted Access

About the authors

Alla S. Kuznetsova

South Ural State Medical University of the Ministry of Healthcare of the Russia

PhD, associate professor of the Department of hospital therapy

Vadim V. Genkel

South Ural State Medical University of the Ministry of Healthcare of the Russia

associate professor of the Department of propedeutics of internal diseases

Anastasia I. Dolgushina

South Ural State Medical University of the Ministry of Healthcare of the Russia

MD, head of the Department of hospital therapy

Igor I. Shaposhnik

South Ural State Medical University of the Ministry of Healthcare of the Russia

MD, head of the Department of propedeutics of internal diseases

Elena R. Olevskaya

South Ural State Medical University of the Ministry of Healthcare of the Russia

MD, associate professor of the Department of hospital surgery

Anna A. Selyanina

South Ural State Medical University of the Ministry of Healthcare of the Russia

assistant at the Department of hospital therapy

Guzel M. Khusainova

South Ural State Medical University of the Ministry of Healthcare of the Russia

assistant at the Department of hospital therapy

References

  1. Liu J., Ayada I., Zhang X. et al. Estimating global prevalence of metabolic dysfunction-associated fatty liver disease in overweight or obese adults. Clin Gastroenterol Hepatol. 2021; 19: S1542-3565(21)00208-1. doi: 10.1016/j.cgh.2021.02.030.
  2. Younossi Z., Tacke F., Arrese M. et al. Global perspectives on nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Hepatology. 2019; 69(6): 2672-82. doi: 10.1002/hep.30251.
  3. Ивашкин В.Т., Драпкина О.М., Маев И.В. с соавт. Распространенность неалкогольной жировой болезни печени у пациентов амбулаторно-поликлинической практики в Российской Федерации: результаты исследования DIREG 2. Российский журнал гастроэнтерологии, гепатологии, колопроктологии. 2015; 6: 31-41.
  4. Pais R., Maurel T. Natural history of NAFLD. J. Clin Med. 2021; 10(6): 1161. doi: 10.3390/jcm10061161.
  5. Huang D.Q., El-Serag H.B., Loomba R. Global epidemiology of NAFLD-related HCC: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol. 2021; 18(4): 223-38. doi: 10.1038/s41575-020-00381-6.
  6. Ильинский И.М., Цирульникова О.М. Неалкогольная жировая болезнь печени - быстро растущее показание к трансплантации печени в современном мире. Вестник трансплантологии и искусственных органов. 2019; 3: 127-140. doi: https://dx.doi.org/10.15825/1995-1191-2019-3-127-140.
  7. Park H.E., Lee H., Choi S.Y. et al. The risk of atrial fibrillation in patients with non-alcoholic fatty liver disease and a high hepatic fibrosis index. Sci Rep. 2020; 10(1): 5023. doi: 10.1038/s41598-020-61750-4.
  8. Ichikawa K., Miyoshi T., Osawa K. et al. Prognostic value of non-alcoholic fatty liver disease for predicting cardiovascular events in patients with diabetes mellitus with suspected coronary artery disease: a prospective cohort study. Cardiovasc Diabetol. 2021; 20(1): 8. doi: 10.1186/s12933-020-01192-4.
  9. Meyersohn N.M., Mayrhofer T., Corey K.E. et al. Association of hepatic steatosis with major adverse cardiovascular events, independent of coronary artery disease. Clin Gastroenterol Hepatol. 2020; 21: S1542-3565(20)30992-7. doi: 10.1016/j.cgh.2020.07.030.
  10. Taylor R.S., Taylor R.J., Bayliss S. et al. Association between fibrosis stage and outcomes of patients with nonalcoholic fatty liver disease: A systematic review and meta-analysis. Gastroenterology. 2020; 158(6): 1611-25. doi: 10.1053/j.gastro.2020.01.043.
  11. Jin J.L., Zhang H.W., Cao Y.X. et al. Liver fibrosis scores and coronary atherosclerosis: novel findings in patients with stable coronary artery disease. Hepatol Int. 2021;15(2): 413-23. doi: 10.1007/s12072-021-10167-w.
  12. Ference B.A., Ginsberg H.N., Graham I. et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J. 2017; 38(32): 2459-72. doi: 10.1093/eurheartj/ehx144.
  13. Mendez-Sanchez N., Cerda-Reyes E., Higuera-de-la-Tijera F. et al. Dyslipidemia as a risk factor for liver fibrosis progression in a multicentric population with non-alcoholic steatohepatitis. F1000Res. 2020; 9: 56. doi: 10.12688/f1000research.21918.1.
  14. Julian M.T., Pera G., Soldevila B. et al. Atherogenic dyslipidemia, but not hyperglycemia, is an independent factor associated with liver fibrosis in subjects with type 2 diabetes and NAFLD: a population-based study. Eur J. Endocrinol. 2021; 184(4): 587-96. doi: 10.1530/ EJE-20-1240.
  15. Malhotra P., Gill R.K., Saksena S., Alrefai W.A. Disturbances in cholesterol homeostasis and non-alcoholic fatty liver diseases. Front Med (Lausanne). 2020; 7: 467. doi: 10.3389/fmed.2020.00467.
  16. Manco M. Insulin resistance and NAFLD: A dangerous liaison beyond the genetics. Children (Basel). 2017; 4(8): 74. doi: 10.3390/ children4080074.
  17. Lo L., McLennan S.V., Williams P.F. et al. Diabetes is a progression factor for hepatic fibrosis in a high fat fed mouse obesity model of non-alcoholic steatohepatitis. J. Hepatol. 2011; 55(2): 435-44. doi: 10.1016/j.jhep.2010.10.039.
  18. Aboulmagd Y.M., El-Bahy A.A.Z., Menze E.T. et al. Role of linagliptin in preventing the pathological progression of hepatic fibrosis in high fat diet and streptozotocin-induced diabetic obese rats. Eur J. Pharmacol. 2020; 881: 173224. doi: 10.1016/j. ejphar.2020.173224.
  19. Tada T., Toyoda H., Sone Y. et al. Type 2 diabetes mellitus: A risk factor for progression of liver fibrosis in middle-aged patients with non-alcoholic fatty liver disease. J. Gastroenterol Hepatol. 2019; 34(11): 2011-18. doi: 10.1111/jgh.14734.
  20. Fujii H., Imajo K., Yoneda M. et al. Japan Study Group of Nonalcoholic Fatty Liver Disease. HOMA-IR: An independent predictor of advanced liver fibrosis in nondiabetic non-alcoholic fatty liver disease. J. Gastroenterol Hepatol. 2019; 34(8): 1390-95. doi: 10.1111/ jgh.14595.
  21. Li X., Jiao Y., Xing Y., Gao P. Diabetes Mellitus and Risk of Hepatic Fibrosis/Cirrhosis. Biomed Res Int. 2019; 2019: 5308308. doi: 10.1 155/2019/5308308.
  22. Makker J., Tariq H., Kumar K. et al. Prevalence of advanced liver fibrosis and steatosis in type-2 diabetics with normal transaminases: A prospective cohort study. World J. Gastroenterol. 2021; 27(6) :523-33. doi: 10.3748/wjg.v27.i6.523.
  23. Keshawarz A., Pyle L., Alman A. et al. Type 1 diabetes accelerates progression of coronary artery calcium over the menopausal transition: The CACTI study. Diabetes Care. 2019; 42(12): 231 5-21. doi: 10.2337/dc19-1126.
  24. Ойноткинова О.Ш., Никонов Е.Л., Демидова Т.Ю. с соавт. Изменения кишечной микробиоты как фактор риска развития дис-липидемии, атеросклероза и роль пробиотиков в их профилактике. Терапевтический архив. 2020; 9: 94-101. doi: https://dx.doi.org/10.26442/00403660.2020.09.000784.
  25. Кролевец Т.С., Ливзан М.А., Мозговой С.И. Роль микробиоты и интестинального мукозального барьера в формировании и прогрессировании неалкогольной жировой болезни печени. Российский журнал гастроэнтерологии, гепатологии, колопроктологии. 2020; 5: 42-48. doi: https://dx.doi.org/10.22416/1382-4376-2020-30-5-42-48.
  26. Ma J., Li H. The role of gut microbiota in atherosclerosis and hypertension. Front Pharmacol. 2018; 9: 1082. doi: 10.3389/ fphar. 2018.01082.
  27. Yang S., Li X., Yang F. et al. Gut microbiota-dependent marker TMAO in promoting cardiovascular disease: Inflammation mechanism, clinical prognostic, and potential as a therapeutic target. Front Pharmacol. 2019; 10: 1360. doi: 10.3389/ fphar. 2019.01360.
  28. Janeiro M.H., Ramirez M.J., Milagro F.I. et al. Implication of trimethylamine N-oxide (TMAO) in disease: Potential biomarker or new therapeutic target. Nutrients. 2018; 10(10): 1398. doi: 10.3390/nu10101398.
  29. Chen Ym., Liu Y., Zhou Rf. et al. Associations of gut-flora-dependent metabolite trimethylamine-N-oxide, betaine and choline with non-alcoholic fatty liver disease in adults. Sci Rep. 2016; 6: 19076. doi: 10.1038/srep19076.
  30. Tan X., Liu Y., Long J. et al. Trimethylamine N-oxide aggravates liver steatosis through modulation of bile acid metabolism and inhibition of farnesoid X. receptor signaling in nonalcoholic fatty liver disease. Mol Nutr Food Res. 2019; 63(17): e1900257. doi: 10.1002/mnfr. 201900257.
  31. Ji Y., Yin Y., Sun L., Zhang W. The molecular and mechanistic insights based on gut-liver axis: nutritional target for non-alcoholic fatty liver disease (NAFLD) improvement. Int J. Mol Sci. 2020; 21(9): 3066. doi: 10.3390/ijms21093066.
  32. Gupta N., Buffa J.A., Roberts A.B. et al. Targeted inhibition of gut microbial trimethylamine n-oxide production reduces renal tubulointerstitial fibrosis and functional impairment in a murine model of chronic kidney disease. Arterioscler Thromb Vasc Biol. 2020; 40(5): 1239-55. doi: 10.1161/ATVBAHA.120.314139.
  33. Zhu Y., Li Q., Jiang H. Gut microbiota in atherosclerosis: focus on trimethylamine N-oxide. APMIS. 2020; 128(5): 353-66. doi: 10.1111/apm.13038.
  34. Matsuzawa Y., Nakahashi H., Konishi M. et al. Microbiota-derived trimethylamine N-oxide predicts cardiovascular risk after STEMI. Sci Rep. 2019; 9(1): 11647. doi: 10.1038/s41598-019-48246-6.
  35. Winther S.A., Ollgaard J.C., Tofte N. et al. Utility of plasma concentration of trimethylamine n-oxide in predicting cardiovascular and renal complications in individuals with type 1 diabetes. Diabetes Care. 2019; 42(8): 1 512-20. doi: 10.2337/dc19-0048.
  36. Geervliet E., Bansal R. Matrix metalloproteinases as potential biomarkers and therapeutic targets in liver diseases. Cells. 2020; 9(5): 1212. doi: 10.3390/cells9051212.
  37. Roeb E. Matrix metalloproteinases and liver fibrosis (translational aspects). Matrix Biol. 2018; 68-69: 463-73. doi: 10.1016/j. matbio.2017.12.012.
  38. Lachowski D., Cortes E., Rice A. et al. Matrix stiffness modulates the activity of MMP-9 and TIMP-1 in hepatic stellate cells to perpetuate fibrosis. Sci Rep. 2019; 9(1): 7299. doi: 10.1038/s41598-019-43759-6.
  39. Johnson J.L. Metalloproteinases in atherosclerosis. Eur J. Pharmacol. 2017; 816: 93-106. doi: 10.1016/j.ejphar.2017.09.007.
  40. Lee H.S., Noh J.Y., Shin O.S. et al, Matrix metalloproteinase-13 in atherosclerotic plaque is increased by influenza A virus infection. J. Infect Dis. 2020; 221(2): 256-66. doi: 10.1093/infdis/jiz580.
  41. Guo Z.Y., Zhang B., Yan Y.H. et al. Specific matrix metalloproteinases and calcification factors are associated with the vulnerability of human carotid plaque. Exp Ther Med. 2018; 16(3): 2071-79. doi: 10.3892/etm.2018.6424.
  42. Guizani I., Zidi W., Zayani Y. et al. Matrix metalloproteinase-3 predicts clinical cardiovascular outcomes in patients with coronary artery disease: a 5 years cohort study. Mol Biol Rep. 2019; 46(5): 4699-707. doi: 10.1007/s11033-019-04914-4.
  43. Somuncu M.U., Pusuroglu H., Karakurt H. et al. The prognostic value of elevated matrix metalloproteinase-9 in patients undergoing primary percutaneous coronary intervention for ST-elevation myocardial infarction: A two-year prospective study. Rev Port Cardiol. 2020; 39(5): 267-76. doi: 10.1016/j.repc.2019.09.011.
  44. Peeters S.A., Engelen L., Buijs J. et al. Plasma matrix metalloproteinases are associated with incident cardiovascular disease and all-cause mortality in patients with type 1 diabetes: a 12-year follow-up study. Cardiovasc Diabetol. 2017; 16(1): 55. doi: 10.1186/ s12933-017-0539-1.
  45. Lahdentausta L., Leskela J., Winkelmann A. et al. Serum MMP-9 Diagnostics, Prognostics, and Activation in Acute Coronary Syndrome and Its Recurrence. J. Cardiovasc Transl Res. 2018; 11(3): 210-20. doi: 10.1007/s12265-018-9789-x.
  46. Gong C., Qi Y., Xu Y. et al. Parecoxib improves atherosclerotic plaque stability by suppressing inflammation and inhibiting matrix metalloproteinases production. Biomed Pharmacother. 2021; 138: 111423. doi: 10.1016/j.biopha.2021.111423.
  47. Balta C., Ciceu A., Herman H. et al. Dose-dependent antifibrotic effect of chrysin on regression of liver fibrosis: The role in extracellular matrix remodeling. Dose Response. 2018; 16(3): 1559325818789835. doi: 10.1177/1559325818789835.
  48. Zhang S., Liu Q., Xiao J. et al. Targeting tissue inhibitor of metalloproteinase 1/2 using a shRNA lentiviral system offers a novel treatment strategy against hepatic fibrosis. Int J. Clin Exp Med. 2016; 9(12): 23329-36.
  49. Frangogiannis N. Transforming growth factor-B in tissue fibrosis. J. Exp Med. 2020; 217(3): e20190103. doi: 10.1084/jem.20190103.
  50. Lodyga M., Hinz B. TGF-B1 - a truly transforming growth factor in fibrosis and immunity. Semin Cell Dev Biol. 2020; 101: 123-39. doi: 10.1016/j.semcdb.2019.12.010.
  51. Yokoyama H., Masaki T., Inoue I. et al. Histological and biochemical evaluation of transforming growth factor-B activation and its clinical significance in patients with chronic liver disease. Heliyon. 2019; 5(2): e01231. doi: 10.1016/j.heliyon.2019.e01231.
  52. Masuda A., Nakamura T., Abe M. et al. Promotion of liver regeneration and anti-fibrotic effects of the TGF-B receptor kinase inhibitor galunisertib in CCl4-treated mice. Int J. Mol Med. 2020; 46(1): 427-38. doi: 10.3892/ijmm.2020.4594.
  53. Mohseni R., Karimi J., Tavilani H. et al. Carvacrol ameliorates the progression of liver fibrosis through targeting of Hippo and TGF-B signaling pathways in carbon tetrachloride (CCl4)-induced liver fibrosis in rats. Immunopharmacol Immunotoxicol. 2019; 41(1): 16371. doi: 10.1080/08923973.2019.1566926.
  54. Toma I., McCaffrey T.A. Transforming growth factor-B and atherosclerosis: interwoven atherogenic and atheroprotective aspects. Cell Tissue Res. 2012; 347(1): 155-75. doi: 10.1007/s00441-011-1189-3.
  55. Hassan M.O., Duarte R., Dix-Peek T. et al. Transforming growth factor-B protects against inflammation-related atherosclerosis in South African CKD patients. Int J. Nephrol. 2018; 2018: 8702372. doi: 10.1155/2018/8702372.
  56. Chen P.Y., Qin L., Li G. et al. Endothelial TGF-B signalling drives vascular inflammation and atherosclerosis. Nat Metab. 2019; 1(9): 912-26. doi: 10.1038/s42255-019-0102-3.
  57. Kocabayoglu P., Lade A., Lee Y.A. et al. beta-PDGF receptor expressed by hepatic stellate cells regulates fibrosis in murine liver injury, but not carcinogenesis. J. Hepatol. 2015; 63(1): 141-147. doi: 10.1016/j.jhep.2015.01.036.
  58. Lambrecht J., Verhulst S., Mannaerts I. et al. A PDGFRB-based score predicts significant liver fibrosis in patients with chronic alcohol abuse, NAFLD and viral liver disease. EBioMedicine. 2019; 43: 501-12. doi: 10.1016/j.ebiom.2019.04.036.
  59. He C., Medley S.C., Hu T. et al. PDGFRB signalling regulates local inflammation and synergizes with hypercholesterolaemia to promote atherosclerosis. Nat Commun. 2015; 6: 7770. doi: 10.1038/ncomms8770.
  60. Богомолов П.О., Кокина К.Ю., Майоров А.Ю., Мишина ЕЕ. Генетические аспекты неалкогольной жировой болезни печени. Вопросы современной педиатрии. 2018; 6: 442-448. doi: https://dx.doi.org/10.15690/vsp.v17i6.1974.
  61. Райхельсон К.Л., Ковязина В.П., Сидоренко Д.В. с соавт. Влияние полиморфизма гена PNPLA3 на течение неалкогольной жировой болезни печени. РМЖ. 2019; 12: 85-88.
  62. Krawczyk M., Grunhage F., Zimmer V., Lammert F. Variant adiponutrin (PNPLA3) represents a common fibrosis risk gene: non-invasive elastography-based study in chronic liver disease. J. Hepatol. 2011; 55(2): 299-306. doi: 10.1016/j.jhep.2010.10.042.
  63. Сидоренко Д.В., Назаров В.Д., Лапин С.В., Эмануэль В.Л. Роль молекулярно-генетических факторов в патогенезе и диагностике неалкогольной жировой болезни печени (обзор литературы и собственные данные). Медицинский алфавит. 2020; 5: 13-18. doi: https://dx.doi.org/10.33667/2078-5631-2020-1-5(419)-13-19.
  64. Valenti L., Al-Serri A., Daly A.K. et al. Homozygosity for the patatin-like phospholipase-3/adiponutrin I148M polymorphism influences liver fibrosis in patients with nonalcoholic fatty liver disease. Hepatology. 2010; 51(4): 1209-17. doi: 10.1002/hep.23622.
  65. Ахмедов В.А. Взаимосвязь сердечно-сосудистых осложнений и неалкогольной жировой болезни печени. РМЖ. 2018; 1: 86-88.
  66. Petta S., Valenti L., Marchesini G. et al. PNPLA3 GG genotype and carotid atherosclerosis in patients with non-alcoholic fatty liver disease. PLoS One. 2013; 8(9): e74089. doi: 10.1371/journal.pone.0074089.
  67. Pare G., Ridker P.M., Rose L. et al. Genome-wide association analysis of soluble ICAM-1 concentration reveals novel associations at the NFKBIK, PNPLA3, RELA, and SH2B3 loci. PLoS Genet. 2011; 7(4): e1001374. doi: 10.1371/journal.pgen.1001374.
  68. Fracanzani A.L., Tiraboschi S., Pisano G. et al. Progression of carotid vascular damage and cardiovascular events in non-alcoholic fatty liver disease patients compared to the general population during 10 years of follow-up. Atherosclerosis. 2016; 246: 208-13. doi: 10.1016/j.atherosclerosis.2016.01.016.
  69. Sinn D.H., Kang D., Chang Y. et al. Non-alcoholic fatty liver disease and progression of coronary artery calcium score: a retrospective cohort study. Gut. 2017; 66(2): 323-29. doi: 10.1136/gutjnl-2016-311854.
  70. Cho Y.K., Kang Y.M., Yoo J.H. et al. The impact of non-alcoholic fatty liver disease and metabolic syndrome on the progression of coronary artery calcification. Sci Rep. 2018; 8(1): 12004. doi: 10.1038/s41598-018-30465-y.
  71. Lee H.H., Cho Y., Choi Y.J. et al. Non-alcoholic steatohepatitis and progression of carotid atherosclerosis in patients with type 2 diabetes: A Korean cohort study. Cardiovasc Diabetol. 2020; 19(1): 81. doi: 10.1186/s12933-020-01064-x.
  72. Zhu W., Deng C.J., Xuan L.P. et al. Peripheral artery disease and risk of fibrosis deterioration in nonalcoholic fatty liver disease: A prospective investigation. Biomed Environ Sci. 2020; 33(4): 217-26. doi: 10.3967/bes2020.031.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies