Influence of pulse current modes on ultrafine-grained titanium mechanical tensile behavior

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

deformation behavior and mechanical properties in tension of ultrafine-grained technically pure Grade 4 titanium is presented. The pulse current modes, which contribute to increase of tensile ductility without changing the microstructure of considered material have been studied. The minimum pulse duration necessary for the manifestation of the electroplastic effect is shown.

About the authors

O. E. Korolkov

ИМАШ РАН

Author for correspondence.
Email: journal@electronics.ru

научный сотрудник 

Russian Federation

M. S. Pugachev

ИМАШ РАН

Email: journal@electronics.ru

научный сотрудник 

Russian Federation

A. V. Polyakov

Уфимский университет науки и технологий

Email: journal@electronics.ru

кандидат технических наук, старший научный сотрудник 

Russian Federation, Уфа

V. V. Stolyarov

ИМАШ РАН

Email: journal@electronics.ru

доктор технических наук, главный научный сотрудник 

Russian Federation

References

  1. Коршунов А. И. Физико-механические свойства материалов после равноканального углового прессования. Особенности проявления: монография. Саров: ФГУП «РФЯЦ-ВНИИЭФ», 2013. 257 с.
  2. Semenova I., Polyakova V., Dyakonov G., Polyakov A. Ultrafine-grained titanium-based alloys: structure and service properties for engineering applications, Advanced Engineering Materials, 2022, vol. 22, issue 1. 1900651, 13 p. https://doi.org/10.1002/adem.201900651.
  3. Баранов Ю. В., Троицкий О. А., Авраамов Ю. С., Шляпин А. Д. Физические основы электроимпульсной и электропластической обработок и новые материалы. М.: МГИУ, 2001. 844 с.
  4. Корольков О. Е., Пахомов М. А., Поляков А. В., Валиев Р. З., Столяров В. В. Влияние размера зерна и скважности на механическое поведение титана при растяжении с импульсным током // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. 2022. № 14. С. 639–651. https://doi.org/10.26456/pcascnn/2022.14.639
  5. Magargee J., Morestin F., & Cao J. Characterization of Flow Stress for Commercially Pure Titanium Subjected to Electrically Assisted Deformation. Journal of Engineering Materials and Technology, 2013. 135 (4). 041003. https://doi.org/10.1115/1.4024394
  6. Fei Yin, Shengtu Ma, Shan Hu, Yanxiong Liu, Lin Hua, Gary J. Cheng. Understanding the microstructure evolution and mechanical behavior of titanium alloy during electrically assisted plastic deformation process. Materials Science and Engineering: A. 2023. vol. 869. 144815, ISSN 0921-5093, https://doi.org/10.1016/j.msea.2023.144815
  7. Li X., Zhou Q., Zhao S., Chen J. Effect of Pulse Current on Bending Behavior of Ti6Al4V Alloy. Procedia Engineering. 2014. 81. PP. 1799–1804. https://doi.org/10.1016/j.proeng.2014.10.235
  8. Поляков А.В., Гундеров Д.В., Рааб Г.И., Сошникова Е. П. Эволюция микроструктуры титана Grade 4 c изменением степени деформации при РКУП-CONFORM // Вестник Уфимского государственного авиационного технического университета. 2011. 15 (1 (41)). С. 95–100.
  9. Okazaki K., Kagawa M., Conrad H. A study of the electroplastic effect in metals, Scripta Metallurgica, 1978, vol. 12, issue 11, pp. 1063–1068, ISSN 0036-9748, https://doi.org/10.1016/0036-9748(78)90026-1
  10. Eipert I., Sivaswamy G., Bhattacharya R., Amir M., Blackwell P. Improvement in Ductility in Commercially Pure Titanium Alloys by Stress Relaxation at Room Temperature. Key Engineering Materials. 2014. Vol. 611–612, pp. 92–98. https://doi.org/10.4028/www.scientific.net/kem.611-612.92
  11. Subrahmanyam Adabala, Shivaprasad Cherukupally, Suman Guha, Raju D.V, Rahul K. Verma, Venkata Reddy N. Importance of machine compliance to quantify electro-plastic effect in electric pulse aided testing: An experimental and numerical study, Journal of Manufacturing Processes. 2022. vol. 75. pp. 268–279, ISSN 1526-6125, https://doi.org/10.1016/j.jmapro.2021.12.027
  12. Smirnov I. V. Strength Characteristics and Fracture of Ultrafine-Grained Titanium Grade 4 Processed by Equal Channel Angular Pressing-Conform. Tech. 2019. Phys. 64. PP. 497–505. https://doi.org/10.1134/S1063784219040212
  13. Moon-Jo Kim, Sangmoon Yoon, Siwook Park, Hye-Jin Jeong, Ju-Won Park, Kuntae Kim, Janghyun Jo, Taehoon Heo, Sung-Tae Hong, Seung Hyun Cho, Young-Kyun Kwon, In-Suk Choi, Miyoung Kim, Heung Nam Han. Elucidating the origin of electroplasticity in metallic materials Applied Materials Today. 2020. 21. 100874 https://doi.org/10.1016/j.apmt.2020.100874

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Fine microstructure (a) and microdefraction pattern (b) of UFG Grade 4

Download (1002KB)
3. Fig. 2. Shape and dimensions of tensile specimens

Download (107KB)
4. Fig. 3. Test setup: 1 – pulse current generator; 2 – oscilloscope; 3 – captures; 4 – sample. The inset shows a diagram of the pulse current oscillogram.

Download (4MB)
5. Fig. 4. Block diagram of the sequence of changing the current mode during stretching with a constant current density

Download (320KB)
6. Fig. 5. Microhardness test zones: 1 – neck; 2 – working zone; 3 – head

Download (122KB)
7. Fig. 6. Stress-strain curves: 1 – no current; 2 – j = 200 A/mm2; 3 – j = 400 A/mm2

Download (514KB)
8. Fig. 7. Effect of pulse current density on microhardness

Download (228KB)
9. Fig. 8. Fractographic images of the fracture surface under tension: a – without current, b – j = 200 A/mm2, c – j = 400 A/mm2. The square frame marks the pores, the round frame – the cups

Download (2MB)

Copyright (c) 2024 Korolkov O.E., Pugachev M.S., Polyakov A.V., Stolyarov V.V.