DISPERSION PROPERTIES OF A COMPOSITE PLATE FROM INHOMOGENEOUS PIEZO- AND DIELECTRIC LAYERS

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

An approach to the study of the dispersion properties of a composite plate of inhomogeneous piezoelectric and dielectric layers is proposed. When modeling the heterogeneity of the layers, a two-component model was used with a functionally gradient change in properties from the parameters of the base material to the parameters of another one. The outer surfaces of the plate are assumed to be free from mechanical stresses. Electrically they can be either open and border on vacuum, or short-circuited. The surface of the dielectric layer is assumed to be open and borders on vacuum. On the example of the problem of shear, initiated by an infinitely distant source of harmonic oscillations of a plate, the influence of the nature of the inhomogeneity, its localization, and the size of the region of transition of one material into another on the dispersion properties of the structure in a wide frequency range is studied. The results of the study are presented in dimensionless parameters, presented in the form of graphs, and may be of particular interest in the development, design and optimization of functionally oriented materials and structures used in the creation of new micro- and nanoscale devices and devices based on surface acoustic SH waves with high performance characteristics.

作者简介

T. Belyankova

Federal Research Centre the Southern Scientific Centre of the Russian Academy of Sciences

Rostov-on-Don, Russian Federation

E. Vorovich

Don State Technical University

Rostov-on-Don, Russian Federation

V. Kalinchuk

Federal Research Centre the Southern Scientific Centre of the Russian Academy of Sciences

Email: kalin@ssc-ras.ru
Rostov-on-Don, Russian Federation

参考

  1. Tiersten H.F. 1969. Linear piezoelectric plate vibrations. New York, Plenum Press: 211 p.
  2. Mindiin R.D. 1955. An introduction to the mathematical theory of vibrations of elastic plates. World Scientific Publishing Co Pte Ltd: 190 p.
  3. Achenbach J.D. 1973. Wave propagation in elastic solids. Amsterdam, North-Holland: 425 p.
  4. Matthews H. 1977. Surface wave filters. Design, construction and use. New York, John Wiley & Sons: 521 p.
  5. Ash E.A., Farnell G.W., Gerard H.M., Oliner A.A., Slobodnik A.J., Smith H.I. 1978. Acoustic surface waves. Berlin, Heidelberg, Springer Verlag: XI + 334 p. doi: 10.1007/3-540-08575-0
  6. Гринченко В.Т., Мелешко В.В. 1981. Гармонические колебания и волны в упругих телах. Киев, Наукова думка: 283 с.
  7. Maugin G.A., Attou D. 1990. An asymptotic theory of thin piezoelectric plates. Q. J. Mech. Appl. Math. 43: 347–362. doi: 10.1093/qjmam/43.3.347
  8. Бреховских Л.М., Годин О.А. 1989. Акустика слоистых сред. М., Наука: 416 с.
  9. Wang J., Yang J. 2000. Higher-order theories of piezoelectric plates. Appl. Mech. Rev. 53(4): 87–99. doi: 10.1115/1.3097341
  10. Favretto-Cristini N., Komatitsch D., Carcione J.M., Cavallini F. 2011. Elastic surface waves in crystals. Part 1: Review of the physics. Ultrasonics. 51(6): 653–660. doi: 10.1016/j.ultras.2011.02.007
  11. Alshits V.I., Maugin G.A. 2005. Dynamics of multilayer’s: elastic waves in an anisotropic graded or stratified plate. Wave Motion. 41(4): 357–394. doi: 10.1016/j.wavemoti.2004.09.002
  12. Shuvalov A.L., Poncelet O., Kiselev A.P. 2008. Shear horizontal waves in transversely inhomogeneous plates. Wave Motion. 45(5): 605–615. doi: 10.1016/j.wavemoti.2007.07.008
  13. Kuznetsov S.V. 2014. Dispersion of SH and love waves. International Journal of Physics. 2(5): 170–180. doi: 10.12691/ijp-2-5-7
  14. Liu G.R., Tani J. 1994. Surface waves in functionally gradient piezoelectric plates. Journal of Vibration and Acoustics. 116(4):440–448. doi: 10.1115/1.2930447
  15. Zagrouba M., Bouhdima M.S. 2021. Investigation of SH wave propagation in piezoelectric plates. Acta Mechanica. 232(9):3363–3379. doi: 10.1007/s00707-021-02990-x
  16. Cao X.S., JinF., Wang Z.K. 2008. Theoretical investigation on horizontally shear waves in a functionally gradient piezoelectric material plate. Advanced Materials Research. 33–37: 707–712. doi: 10.4028/ href='www.scientific.net/amr.33-37.707' target='_blank'>www.scientific.net/amr.33-37.707
  17. Nie G., An Z., Liu J. 2009. SH-guided waves in layered piezoelectric/piezomagnetic plates. Progress in Natural Science. 19(7): 811–816. doi: 10.1016/j.pnsc.2008.10.007
  18. Ezzin H., Amor M.B., Ghozlen M.H.B. 2016. Propagation behavior of SH waves in layered piezoelectric/piezomagnetic plates. Acta Mechanica. 228(3): 1071–1081. doi: 10.1007/s00707-016-1744-9
  19. Wang Q. 2002. SH wave propagation in piezoelectric coupled plates. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control. 49(5): 596–603. doi: 10.1109/tuffc.2002.1002458
  20. Son M.S., Kang Y.J. 2011. Propagation behavior of SH waves in layered piezoelectric plates. Journal of Mechanical Science and Technology. 25(3): 613–619. doi: 10.1007/s12206-011-0114-8
  21. Belyankova T.I., Kalinchuk V.V. 2021. Shear horizontal waves in piezoelectric structures with a functionally graded coating. Mechanics of Advanced Materials and Structures. 28(5): 486–494. doi: 10.1080/15376494.2019.1578006
  22. Belyankova T.I., Vorovich E.I., Kalinchuk V.V., Tukodova O.M. 2020. Peculiarities of surface acoustic waves, propagation in structures with functionally graded piezoelectric materials, coating from different ceramics on the basis of PZT. Journal of Advanced Dielectrics. 10(1–2): 2060017. doi: 10.1142/S2010135X20600176
  23. Belyankova T.I., Vorovich E.I., Kalinchuk V.V., Tukodova O.M. 2021. Specific features of SH-waves propagation in structures with prestressed inhomogeneous coating made of piezoceramics based on LiNbO3. Journal of Advanced Dielectrics. 11(4–5): 2160007. doi: 10.1142/S2010135X21600079
  24. Babeshko V.A., Evdokimova O.V., Babeshko O.M., Ryadchikov I.V. 2018. A method for the design of inhomogeneous materials and block structures. Doklady Physics. 63(10): 402–406. doi: 10.1134/S1028335818100014
  25. Igumnov L.A., Markov I.P. 2018. A boundary element approach for 3d transient dynamic problems of moderately thick multilayered anisotropic elastic composite plates. Materials Physics and Mechanics. 37(1): 79–83. doi: 10.18720/MPM.3712018_11

补充文件

附件文件
动作
1. JATS XML

版权所有 © Издательство «Наука», 2022

##common.cookie##