ON ELLIPTICITY OF EQUILIBRIUM EQUATIONS WITHIN NONLINEAR GRADIENT ELASTICITY OF N-th ORDER

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

Within the framework of strain gradient elasticity of n-th order we introduce ellipticity and strong ellipticity conditions. In this theory a density of potential energy depends on deformation gradients up to n-th order. As a result, static equations constitute a system of three nonlinear partial differential equations of order 2n with respect to vector of displacements. This model is used for description of long-range interactions, which are essential at small scales. Indeed, the strain gradient elasticity describes size-effects observed at the micro- and nano-scales. In nonlinear theory of elasticity the conditions of ordinary ellipticity and strong ellipticity could be treated as constitutive inequalities among others. In particular, ellipticity is related to an infinitesimal material instability. From the mathematical point of view, ellipticity is a natural property of equations of statics, which guarantees certain properties of corresponding boundary-value problems, such as, for example, smoothness of solutions, solvability, properties of spectrum. In comparison to nonlinear theory of elasticity the conditions of strong ellipticity in gradient media are less examined. Here ellipticity conditions imply constraints on the dependence of constitutive equations on the deformation gradient of n-th order. Precisely, ellipticity implies constraints on the tangent stiffness moduli of highest order and does not imply any on the dependence of deformation gradients of smaller order. Strain gradient elasticity of n-th order could be treated as a certain gradient regularization of the model of order n-1 for any number n. From this point of view one can avoid the violation of ellipticity considering deformation gradients of higher order.

Негізгі сөздер

Авторлар туралы

V. Eremeyev

Federal Research Centre the Southern Scientific Centre of the Russian Academy of Sciences; University of Cagliari

Email: eremeyev.victor@gmail.com
Rostov-on-Don, Russian Federation; Cagliari, Italy

Әдебиет тізімі

  1. Bertram A. 2022. Compendium on gradient materials. Cham, Springer: 293 p.
  2. Bertram A. 2021. Elasticity and plasticity of large deformations: including gradient materials. 4th edition. Berlin, Springer: 410 p.
  3. Mechanics of strain gradient materials. 2020. Cham, Springer: VIII + 171 p.
  4. Discrete and continuum models for complex metamaterials. 2020. Cambridge, Cambridge University Press. 398 p.
  5. Вишик М.И. 1951. О сильно эллиптических системах дифференциальных уравнений. Математический сборник. 29(71)(3): 615–676.
  6. Agranovich M. 1997. Elliptic boundary problems. In: Partial Differential Equations IX: Elliptic Boundary Problems. Encyclopaedia of Mathematical Sciences, Vol. 79. Berlin, Springer: 1–144.
  7. Fichera G. 1965. Linear elliptic differential systems and eigenvalue problems. Berlin, Springer: 174 p.
  8. Волевич Л.Р. 1965. Разрешимость краевых задач для общих эллиптических систем. Математический сборник. 68(110)(3): 373–416.
  9. Dell’Isola F., Seppecher P., Madeo A. 2012. How contact interactions may depend on the shape of Cauchy cuts in Nthgradient continua: approach “à la D’Alembert”. Z. Angew. Math. Phys. 63: 1119–1141. doi: 10.1007/s00033-012-0197-9
  10. Lurie A.I. 1990. Non-linear theory of elasticity. Amsterdam, North-Holland: 617 p.
  11. Ogden R.W. 1997. Non-linear elastic deformations. Mineola, Dover: 532 p.
  12. Eremeyev V.A. 2021. Strong ellipticity conditions and infinitesimal stability within nonlinear strain gradient elasticity. Mechanics Research Communications. 117: 103782. doi: 10.1016/j.mechrescom.2021.103782
  13. Toupin R. 1962. Elastic materials with couple-stresses. Archive for Rational Mechanics and Analysis. 11(1): 385–414.
  14. Toupin R.A. 1964. Theories of elasticity with couple-stress. Archive for Rational Mechanics and Analysis. 17(2): 85–112.
  15. Mindlin R.D. 1964. Micro-structure in linear elasticity. Archive for Rational Mechanics and Analysis. 16(1): 51–78.
  16. Mindlin R.D., Eshel N. 1968. On first strain-gradient theories in linear elasticity. International Journal of Solids and Structures. 4(1): 109–124.
  17. Eremeyev V.A., Lazar M. 2022. Strong ellipticity within the Toupin–Mindlin first strain gradient elasticity theory. Mechanics Research Communications. 124: 103944. doi: 10.1016/j.mechrescom.2022.103944
  18. Eremeyev V.A., Reccia E. 2022. Nonlinear strain gradient and micromorphic onedimensional elastic continua: Comparison through strong ellipticity conditions. Mechanics Research Communications. 124: 103909. doi: 10.1016/j.mechrescom.2022.103909
  19. Eremeyev V.A., Cloud M.J., Lebedev L.P. 2018. Applications of tensor analysis in continuum mechanics. New Jersey, World Scientific: 428 p.
  20. Bigoni D., Gourgiotis P.A., 2016. Folding and faulting of an elastic continuum. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 472(2187): 20160018. doi: 10.1098/rspa.2016.0018

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Издательство «Наука», 2022

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>