METHOD OF ROBUSTLY STABLE MOTION CONTROL OF A GROUP OF MOBILE ROBOTS WITH A LEADER FOR MONITORING AND DIAGNOSTICS SYSTEMS AND ENSURING THE SAFETY OF THE POPULATION AND COASTAL INFRASTRUCTURE
- Авторлар: Kapustyan S.G1, Orda-Zhigulina M.V1, Orda-Zhigulina D.V1
-
Мекемелер:
- Federal Research Centre the Southern Scientific Centre of the Russian Academy of Sciences
- Шығарылым: Том 17, № 2 (2021)
- Беттер: 66-73
- Бөлім: Articles
- URL: https://journals.eco-vector.com/2500-0640/article/view/627992
- DOI: https://doi.org/10.7868/S25000640210207
- ID: 627992
Дәйексөз келтіру
Аннотация
The developing scientific foundations issue is relevant and topical today for the application of digital economy technologies for monitoring and forecasting hazardous processes and ensuring the safety of the population and coastal infrastructure. Especially it is topical to the implementation of the theoretical principles of monitoring for aquatic ecosystems which would include both classical, field observations and new technologies of contactless monitoring. The goal of this study is to solve this issue in terms of improving the characteristics of reliability and “openness” of systems. The authors of this article have developed the structure of a decentralized distributed system without hierarchical subordination as well as methods and algorithms for the functioning of a distributed network of sensors and a mobile robotic complex. MRC is the part of this system. MRC allows collecting data on the state of the environment by means of on-board sensor subsystems and collecting data accumulated by telecommunication isolated fragments of a distributed network of smart sensors in remote and hard-to-reach places using distributed computing and elements of fog computing. The effectiveness of the proposed model and method is achieved through the use of a control system, the multidimensional digital control device of which has a sufficiently high order. Algorithms of calculating the values of control actions are obtained by using decomposing control and the method of analytical synthesis of systems with output and action control. The robustness property to deviations of uncertain delays in the communication channels of each MR with the leader is achieved by using the properties of the proposed polynomial control equations. The proposed approach can be used to create digital control systems for both one-dimensional and multidimensional objects (multirobotic complex) which can be used to place sensors for monitoring and diagnostic systems in various fields of application.
Авторлар туралы
S. Kapustyan
Federal Research Centre the Southern Scientific Centre of the Russian Academy of Sciences
Email: kap56@mail.ru
Rostov-on-Don, Russian Federation
M. Orda-Zhigulina
Federal Research Centre the Southern Scientific Centre of the Russian Academy of Sciences
Email: jigulina@mail.ru
Rostov-on-Don, Russian Federation
D. Orda-Zhigulina
Federal Research Centre the Southern Scientific Centre of the Russian Academy of Sciences
Email: dinazhigulina@mail.ru
Rostov-on-Don, Russian Federation
Әдебиет тізімі
- Orda-Zhigulina M.V., Melnik E.V., Ivanov D.Ya., Rodina A.A., Orda-Zhigulina D.V. 2019. Combined Method of Monitoring and Predicting of Hazardous Phenomena. In: Software Engineering Methods in Intelligent Algorithms. CSOC 2019. Advances in Intelligent Systems and Computing, vol. 984. Cham, Springer: 55–61. doi: 10.1007/978-3-030-19807-7_6
- Orda-Zhigulina D.V., Orda-Zhigulina M.V., Rodina A.A. 2020. Cognitive Model for Monitoring and Predicting Dangerous Natural Processes for Hydro Ecosystem Analysis. In: Software Engineering Perspectives in Intelligent Systems. CoMeSySo 2020. Advances in Intelligent Systems and Computing, vol. 1294. Cham, Springer: 688–695. doi: 10.1007/978-3-030-63322-6_58
- Мельник Э.В., Орда-Жигулина М.В., Орда-Жигулина Д.В., Родина А.А. 2020. Метод повышения надежности за счет реконфигурации ресурсов в системах мониторинга и диагностики опасных природных явлений. Известия ТулГУ. Технические науки. 2: 18–26.
- Melnik E.V., Bulysheva N.I., Orda-Zhigulina M.V., Orda-Zhigulina D.V. 2020. Component of Decision Support Subsystem for Monitoring and Predicting of Hazardous Processes at the Base of Analysis of Macro Zoobenthos Communities of Azov Sea. In: Software Engineering Perspectives in Intelligent Systems. CoMeSySo 2020. Advances in Intelligent Systems and Computing, vol. 1294. Cham, Springer: 676–687. doi: 10.1007/978-3-030-63322-6_57
- Каляев И.А., Гайдук А.Р., Капустян С.Г. 2009. Модели и алгоритмы коллективного управления в группах роботов. М., ФИЗМАТЛИТ: 280 с.
- Попов С.Г., Крашенинников А.С., Чуватов М.В. 2019. Исследование алгоритма обследования местности гетерогенной группой автономных мобильных роботов. Робототехника и техническая кибернетика. 7(4): 278–290.
- Valentini G., Brambilla D., Hamann H., Dorigo M. 2016. Collective perception of environmental features in a robot swarm. In: Swarm Intelligence. ANTS 2016. Lecture Notes in Computer Science, vol. 9882. Cham, Springer: 65–76. doi: 10.1007/978-3-319-44427-7_6
- Тиллисон Д. 2012. Концепции построения беспроводных датчиковых сетей. Электронные компоненты. 5: 102–105.
- Strobel V., Dorigo M. 2018. Blockchain technology for robot swarms: A shared knowledge and reputation management system for collective estimation. IRIDIA – Technical Report Series Technical Report No. TR/IRIDIA/2018-009. Bruxelles, IRIDIA, Institut de Recherches Interdisciplinaires et de D´eveloppements en Intelligence Artificielle, Universite Libre de Bruxelles: 12 p.
- Castelló Ferrer E., Rudovic O., Hardjono Th., Pentland A. 2018. RoboChain: a secure data-sharing framework for human-robot interaction. In: eTELEMED 2018. The Tenth International Conference on eHealth, Telemedicine, and Social Medicine (March 25–29, 2018 - Rome, Italy): 124–130.
- Каляев И.А., Капустян С.Г., Усачев Л.Ж. 2016. Метод решения задачи распределения целей в группе БЛА сетецентрической системой управления. Известия Южного федерального университета. Технические науки. 12(185): 55–70. doi: 10.18522/2311-3103-2016-12-5570
- Трифонов А.Г. Постановка задачи оптимизации и численные методы ее решения. Экспонента. URL: http://matlab.exponenta.ru/optimiz/book_2/index.php (дата обращения: 09.04.2021).
Қосымша файлдар
