The influence of Initial Mechanical, Electrostatic and Temperature Effects on the Properties of Pyropiezoelectrics of the Hexagonal System

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The work is aimed at studying the effect of initial mechanical, temperature and electrostatic influences on the change in the deformed state and physical properties of thermoelectroelastic materials, which in their natural state belong to the materials of the 6mm hexagonal symmetry class. It is assumed that the initial deformed state induced in the material is homogeneous, the initial temperature effects do not exceed the temperature of phase transitions, and the initial electrostatic field is specified by the strength vector. The study is based on the use of linearized constitutive relations, equations of motion of thermoelectroelastic media, electrostatic equations and heat propagation equations obtained within the framework of the theory of imposing small deformations on finite ones. Matrix representations of tensors of elastic and piezoelectric moduli of a prestressed material are presented, clearly illustrating the influence of initial mechanical and temperature, as well as electrostatic influences on the properties of a pyropiezoelectric material. Within the framework of the proposed approach, using CdSe as an example, the separate and combined influence of the type and magnitude of initial mechanical stresses, electrical and thermal effects on the nature of induced deformations and transformation of the properties of the material was studied. The types of mechanical influences leading to maximum values of electrical induction are determined. The influence of the nature of temperature effects in the absence of initial mechanical stresses on the magnitude and direction of the electrical induction vector is shown. The patterns of influence of the initial high-intensity electrostatic field on the elastic and piezoelectric properties of the material have been revealed. The research results are presented in the form of graphs and may be of particular interest in the development, design and optimization of pyropiezoelectric materials used in the creation of new micro- and nano-sized devices.

Sobre autores

T. Belyankova

Federal Research Centre the Southern Scientific Centre of the Russian Academy of Sciences

Email: tbelen415@mail.ru
Rostov-on-Don, Russian Federation

V. Kalinchuk

Federal Research Centre the Southern Scientific Centre of the Russian Academy of Sciences

Rostov-on-Don, Russian Federation

L. Lomakina

Federal Research Centre the Southern Scientific Centre of the Russian Academy of Sciences

Rostov-on-Don, Russian Federation

Bibliografia

  1. Mindlin R.D. 1961. On the equations of motion of piezoelectric crystals. In: Problems of Continuum Mechanics: Contributions in Honor of the Seventieth Birthday of Academician N.I. Muskhelishvili, Philadelphia, SIAM: 282–290.
  2. Nowacki W. 1965. A reciprocity theorem for coupled mechanical and thermoelectric fields in piezoelectric crystals. Proceedings of Vibration Problems. 6(1): 3‒15.
  3. Tiersten H.F. 1971. On the nonlinear equations of thermo-electroelasticity. International Journal of Engineering Sciences. 9(7): 587‒604. doi: 10.1016/0020-7225(71)90062-0
  4. Chandrasekharaiah D.S. 1984. A temperature-rate-dependent theory of thermopiezoelectricity. Journal of Thermal Stresses. 7(3‒4): 293–306. doi: 10.1080/01495738408942213
  5. Chandrasekharaiah D.S. 1988. A generalized linear thermoelasticity theory for piezoelectric media. Acta Mechanica. 71(1‒4): 39–49. doi: 10.1007/BF01173936
  6. Sharma M.D. 2010. Propagation of inhomogeneous waves in anisotropic piezo-thermoelastic media. Acta Mechanica. 215(1‒4): 307–318. doi: 10.1007/s00707-010-0336-3
  7. Biswas S. 2020. Surface waves in piezothermoelastic transversely isotropic layer lying over piezothermoelastic transversely isotropic half-space. Acta Mechanica. 232(2): 373–387. doi: 10.1007/s00707-020-02848-8
  8. Kuang Z.-B., Yuan X.-G. 2011. Reflection and transmission of waves in pyroelectric and piezoelectric materials. Journal of Sound and Vibration. 330(6): 1111‒1120. doi: 10.1016/j.jsv.2010.09.026
  9. Singh P., Singh A.K., Paswan B., Chattopadhyay A. 2023. Mathematical study on reflection and transmission of plane waves in a rotating piezo-thermo-elastic composite structure. Mechanics of Advanced Materials and Structures. 30(14): 2941‒2952. doi: 10.1080/15376494.2022.2066232
  10. Бабешко В.А., Ратнер С.В., Сыромятников П.В. 2007. О смешанных задачах для термоэлектроупругих сред с разрывными граничными условиями. Доклады Академии наук. 412(6): 753‒758.
  11. Othmani Сh., Khelfa T. 2023. Effect of graded pre-stress on the propagation of guided waves in functionally graded piezoelectric–piezomagnetic materials. Mechanics Research Communications. 127: 104037. doi: 10.1016/j.mechrescom.2022.104037
  12. Kumar D., Kundu S. 2023. Effect of initial stresses on the surface wave propagation in highly anisotropic piezoelectric composite media. Waves in Random and Complex Media. doi: 10.1080/17455030.2022.2164093
  13. Guha S., Singh A.K. 2020. Effects of initial stresses on reflection phenomenon of plane waves at the free surface of a rotating piezothermoelastic fiber-reinforced composite half-space. International Journal of Mechanical Sciences. 181: 105766. doi: 10.1016/j.ijmecsci.2020.105766
  14. Гузь А.Н., Махорт Ф.Г. 1971. Об описании влияния конечных деформаций на скорости распространения упругих волн. Доклады Академии наук СССР. 198(2): 316–318.
  15. Гринфельд М.А., Мовчан А.А. 1975. Влияние предварительного деформирования на распространение упругих волн. Известия Академии наук СССР. Серия физика Земли. 8: 29‒35.
  16. Калинчук В.В., Белянкова Т.И., Евдокимова О.В. 2006. Определяющие соотношения динамики преднапряженной пьезоактивной среды в отсутствие внешних электрических полей. Вестник Южного научного центра. 2(1): 16‒23. doi: 10.23885/1813-4289-2006-2-1-16-23
  17. Белянкова Т.И., Калинчук В.В. 2020. О влиянии электростатического поля на ПАВ в предварительно напряженных сегнетоэлектрических гетероструктурах. Известия Российской академии наук. Механика твердого тела. 6: 101‒110. doi: 10.31857/S0572329920050037
  18. Белянкова Т.И., Калинчук В.В. 2017. К моделированию преднапряженного термоэлектроупругого полупространства с покрытием. Известия Российской академии наук. Механика твердого тела. 1: 117‒135.
  19. Белянкова Т.И., Калинчук В.В., Ломакина Л.В. Расчет однородного начально-деформированного состояния термоэлектроупругих материалов класса 6mm, наведенного за счет механических, электрических и температурных воздействий. Свидетельство о регистрации программы для ЭВМ. Номер свидетельства: RU 2022612390. Патентное ведомство: Россия. Номер заявки 2022610277, дата регистрации 11.01.2022, дата публикации: 28.02.2022.
  20. Най Дж. 1967. Физические свойства кристаллов и их описание при помощи тензоров и матриц. М., Мир: 385 с.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Издательство «Наука», 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies