SYNTHESIS, STRUCTURE AND GRAIN STRUCTURE OF THE SOLID SOLUTIONS BASED ON (1-x)BiFeO3-xYMnO3(x=0,40-0,50)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The materials based on the (1-x)BiFeO3-xYMnO3(x=0.40, 0.45, 0.50) system of two classical multiferroics were prepared under various conditions of solid-phase synthesis. In total, four methods are distinguished, differing in temperatures and times of synthesis. The crystal structure of the obtained objects was studied using the methods of X-ray diffraction and phase analysis. It is shown that the materials have a complex multiphase and almost always morphotropic composition, in which perovskite phases with different unit cell distortions coexist. It was noted that the formation of a monoclinic phase cannot be ruled out during the synthesis process. A ferrimagnet type phase of the YFeMnO5 is almost always formed at the synthesis temperatures above 900 °C, while a mullite type phase of the Bi2Fe4O9 is formed at lower temperatures. The grain structure of the prepared ceramics cross-section surface areas was studied. The analysis of the formation of the microstructure in various synthesis methods showed that at sintering temperatures above 900 °C the surface morphology is a set of crystallites of different fractions, having the shape of hexagonal and rectangular prisms. At sintering temperatures below 900 °C, the presence of the effect of “enveloping” grains with submicron-sized particles was noted. This effect may be related to magnetic properties, but requires additional research. An X-ray spectral analysis of the elemental composition of the cross-sectioned areas was carried out. It is shown that, regardless of the shape of the crystallites, their energy spectra contain characteristic lines of all five components of the studied system. This may indicate the formation of a mixture of solid solutions.

About the authors

A. V Nazarenko

Federal Research Centre the Southern Scientific Centre of the Russian Academy of Sciences

Rostov-on-Don, Russian Federation

E. V Glazunova

Southern Federal University

Rostov-on-Don, Russian Federation

L. A Shilkina

Southern Federal University

Rostov-on-Don, Russian Federation

D. V Stryukov

Federal Research Centre the Southern Scientific Centre of the Russian Academy of Sciences

Rostov-on-Don, Russian Federation

A. G Rudskaya

Southern Federal University

Rostov-on-Don, Russian Federation

L. A Reznichenko

Southern Federal University

Rostov-on-Don, Russian Federation

References

  1. Заславский А.И., Тутов А.Г. 1960. Структура нового антиферромагнетика BiFeO3. Доклады Академии наук СССР. 135(4): 815‒817.
  2. Filippetti A., Hill N.A. 2002. Coexistence of magnetism and ferroelectricity in perovskites. Physical Review B. 65: 195120. doi: 10.1103/PhysRevB.65.195120
  3. Smolenskii G.A., Bokov V.A., Isupov V.A., Krainik N.N., Nedlin G.H. 1968. Magnetically ordered ferroelectrics. Helvetica Physica Acta. 41: 1187‒1198
  4. Michel C., Moreau J.-M., Achenbach G.D., Gerson R., James W.J. 1969. The atomic structure of BiFeO3. Solid State Communications. 7(9): 701–704. doi: 10.1016/0038-1098(69)90597-3
  5. Catalan G., Scott J.F. 2009. Physics and applications of bismuth ferrite. Advanced Materials. 21(24): 2463‒2485. doi: 10.1002/adma.200802849
  6. Sosnowska I., Neumaier T.P., Steichele E. 1982. Spiral magnetic ordering in bismuth ferrite. Journal of Physics C: Solid State Physics. 15(23): 4835‒4846. doi: 10.1088/0022-3719/15/23/020
  7. Sando D., Barthélémy A., Bibes M. 2014. BiFeO3 epitaxial thin films and devices: past, present and future. Journal of Physics: Condensed Matter. 26: 473201. doi: 10.1088/0953-8984/26/47/473201
  8. Huang Z.J., Cao Y., Sun Y.Y., Xue Y.Y., Chu C.W. 1997. Coupling between the ferroelectric and antiferromagnetic orders in YMnO3. Physical Review B. 56(4): 2623. doi: 10.1103/PhysRevB.56.2623
  9. Lonkai Th., Tomuta D.G., Amann U., Ihringer J., Hendrikx R.W.A., Többens D.M., Mydosh J.A. 2004. Development of the high-temperature phase of hexagonal manganites. Physical Review B. 69(13): 134108. doi: 10.1103/PhysRevB.69.134108
  10. Goldschmidt V.M. 1927. Geochemisca veterlun. Oslo, Norske Videnkap: 1‒27.
  11. Gupta H.C., Ashdhir P. 1999. Lattice dynamics of orthorhombic perovskite YMnO3. Physica B: Condensed Matter. 262(1–2): 1‒4. doi: 10.1016/S0921-4526(98)00661-9
  12. Alonso J.A., Martínez-Lope M.J., Casais M.T., Fernández-Díaz M.T. 2000. Evolution of the Jahn ‒ Teller distortion of MnO6 octahedra in RMnO3 perovskites (R = Pr, Nd, Dy, Tb, Ho, Er, Y): A neutron diffraction study. Inorganic Chemistry. 39(5): 917‒923. doi: 10.1021/ic990921e
  13. Fournier J.-M. 1993. Chemical pressure in actinide systems. Physica B: Condensed Matter. 190(1): 50‒54. doi: 10.1016/0921-4526(93)90441-8
  14. Nazarenko A.V., Razumnaya A.G., Kupriyanov M.F., Kabirov Yu.V., Rudskaya A.G., Teslenko P.Yu., Kofanova N.B. 2011. Specific features of structural states in the BiFeO3–YMnO3 solid solutions. Physics of the Solid State. 53(8): 1599‒1602. doi: 10.1134/S106378341108021X
  15. Yokosawa T., Belik A.A., Asaka T., Kimoto K., Takayama-Muromachi E., Matsui Y. 2008. Crystal symmetry of BiMnO3: electron diffraction study. Physical Review B. 77(2): 024111. doi: 10.1103/PhysRevB.77.024111
  16. Tripathy S.N., Mishra K.K., Sen S., Mishra B.G., Pradhan D.K., Palai R., Pradhan D.K. 2013. Phase transition and magneto-electric coupling of BiFeO3–YMnO3 multiferroicnanoceramics. Journal of Applied Physics. 114(14): 144104. doi: 10.1063/1.4824061
  17. Михайлов В.И., Довгий В.Т., Линник А.И., Кравченко З.Ф., Каменев В.И., Кулик Н.Н., Бондарук А.В., Татарчук Д.Д., Давыдейко Н.В. 2017. Магнитные и диэлектрические свойства твердых растворов (1 − x)BiFeO3 – xYMnO3 – перспективных материалов для спинтроники. Фундаментальные проблемы радиоэлектронного приборостроения. 17(2): 500‒503.
  18. Михайлов В.И., Довгий В.Т., Линник А.И., Кравченко З.Ф., Каменев В.И., Кулик Н.Н., Бондарук A.B., Легенький Ю.А., Давыдейко Н.В. 2018. Магнитные и диэлектрические свойства композиционных мультиферроиков (1 − x)BiFeO3–xYMnO3. Физика и техника высоких давлений. 28(2): 52‒59.
  19. Dovgii V.T., Kulyk N.N., Bodnaruk A.V., Tatarchuk D.D. 2019. Magnetic and dielectric properties of solid solutions (1 − x)BiFeO3‒xYMnO3 multiferroics. Low Temperature Physics. 45(10): 1092‒1095. doi: 10.1063/1.5125910
  20. Algueró M., Quintana-Cilleruelo J.A., Peña O., Castro A. 2021. Magnetic properties across the YMnO3-BiFeO3 system designed for phase-change magnetoelectric response. Materials Science and Engineering B: Solid-State Materials for Advanced Technology. 266: 115055. doi: 10.1016/j.mseb.2021.115055
  21. Quintana-Cilleruelo J.Á., Veerapandiyan V.K., Deluca M., Algueró M., Castro A. 2019. Mechanosynthesis of the whole Y1−xBixMn1−xFexO3 perovskite system: structural characterization and study of phase transitions. Materials. 12(9): 1515. doi: 10.3390/ma12091515
  22. Quintana-Cilleruelo J.A., Castro A., Amorín H., Veerapandiyan V.K., Deluca M., Peña O., Algueró M. 2020. Ceramic processing and multiferroic properties of the perovskite YMnO3-BiFeO3 binary system. Journal of the American Ceramic Society. 103(9): 4846‒4858. doi: 10.1111/ jace.17211
  23. Pandey R., Pradhan L.K., Kumar P., Kar M. 2018. Double crystal symmetries and magnetic orderings in co-substituted (Y and Mn) bismuth ferrite. Ceramics International. 44(15): 18609‒18616. doi: 10.1016/j.ceramint.2018.07.085
  24. Шилкина Л.А., Глазунова Е.В., Вербенко И.А., Резниченко Л.А. 2019. Фазообразование феррита висмута. Вестник Луганского национального университета имени Владимира Даля. 7(25): 25‒28.
  25. Döbelin N., Kleeberg R. 2015. Profex: a graphical user interface for the Rietveld refinement program BGMN. Journal of Applied Crystallography. 48(5): 1573‒1580. doi: 10.1107/S1600576715014685
  26. Momma K., Izumi F. 2011. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography. 44(6): 1272‒1276. doi: 10.1107/S0021889811038970
  27. Du Y., Cheng Z., Yu Z., Dou S.X., Wang X., Liu L.Q. 2012. Hydrothermal synthesized bismuth ferrites particles: thermodynamic, structural, and magnetic properties. Journal of Nanoscience and Nanotechnology. 12(2): 1684‒1687. doi: 10.1166/jnn.2012.4642
  28. Craig D.C., Stephenson N.C. 1975. Structural studies of somebody-centered cubic phases of mixed oxides involving Bi2O3: The structures of Bi25FeO40 and Bi38ZnO60. Journal of Solid State Chemistry. 15(1): 1–8. doi: 10.1016/0022-4596(75)90264-9
  29. Espinosa G.P. 1962. Crystal chemical study of the rare-earth iron garnets. The Journal of Chemical Physics. 37(10): 2344‒2347. doi: 10.1063/1.1733008
  30. Muñoz A., Alonso J.A., Martínez-Lope M.J., Martínez J.L. 2004. Synthesis, structural, and magnetic characterization of a new ferrimagnetic oxide: YFeMnO5. Chemistry of Materials. 16(21): 4087‒4094. doi: 10.1021/cm049239v
  31. Moreira dos Santos A., Cheetham A.K., Atou T., Syono Y., Yamaguchi Y., Ohoyama K., Chiba H., Rao C.N.R. 2002. Orbital ordering as the determinant for ferromagnetism in biferroic BiMnO3. Physical Review B. 66: 064425. doi: 10.1103/PhysRevB.66.064425
  32. Rasti J. 2019. Study of the grain size distribution during preheating period prior to the hot deformation in AISI 316L austenitic stainless steel. Physics of Metals and Metallography. 120(6): 584‒592. doi: 10.1134/S0031918X19060103
  33. Tian Z.M., Yuan S.L., Wang X.L., Zheng X.F., Yin S.Y., Wang C.H., Liu L. 2009. Size effect on magnetic and ferroelectric properties in Bi2Fe4O9 multiferroic ceramics. Journal of Applied Physics. 106(10): 103912. doi: 10.1063/1.3259392

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Издательство «Наука»

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies