Role Of microRNAs In The Development Of Aggressive Forms Of Prostate Cancer

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Prostate cancer is the most frequently diagnosed cancer and the second leading cause of cancer deaths among men. Complex genetic and epigenetic mechanisms are involved in the development and progression of prostate cancer. In recent years, evidence has been accumulating that aberrant microRNA expression contributes to the development of hormone resistance and radioresistance in prostate cancer. MicroRNAs are short non-coding RNAs involved in the process of post-transcriptional regulation of genes. Numerous studies have demonstrated that microRNAs are targeted on and regulate critical genes involved in prostate cancer aggressiveness. However, the molecular mechanisms underlying the involvement of microRNAs in treatment-resistant prostate cancer remain unclear. The purpose of the review is to analyze the role of microRNAs in the molecular mechanisms of the development of clinically aggressive forms of prostate cancer. A wide range of target genes and a significant change in microRNA expression profiles during the transition of malignant cells to a radioresistant and hormone resistant state makes microRNAs promising candidates for searching for prognostic markers for the development of aggressive forms of prostate cancer and determining targets for targeted therapy. Analysis of key microRNAs involved in the development of clinically aggressive forms of prostate cancer has shown that the molecular mechanisms by which microRNAs mediate the development of hormone resistance and radioresistance in prostate cancer include apoptosis, cell growth and proliferation, cancer stem cells, autophagy, regulation of epithelial-mesenchymal transition, as well as cell migration and invasion.

About the authors

E. A Chernogubova

Federal Research Centre the Southern Scientific Centre of the Russian Academy of Sciences

Email: eachernogubova@mail.ru
Rostov-on-Don, Russian Federation

A. N Mashkarina

Federal Research Centre the Southern Scientific Centre of the Russian Academy of Sciences

Email: aina_mashkarina@mail.ru
Rostov-on-Don, Russian Federation

References

  1. Злокачественные новообразования в России в 2021 году (заболеваемость и смертность). 2022. М., Московский научно-исследовательский онкологический институт им. П.А. Герцена – филиал ФГБУ «НМИЦ радиологии» Минздрава России: 252 с.
  2. Siegel R.L., Miller K.D., Fuchs H.E., Jemal A. 2022. Cancer statistics, 2022. CA: A Cancer Journal for Clinicians. 72(1): 7‒33. doi: 10.3322/caac.21708
  3. Soares S., Guerreiro S.G., Cruz-Martins N., Faria I., Baylina P., Sales M.G., Correa-Duarte M.A., Fernandes R. 2021. The influence of miRNAs on radiotherapy treatment in prostate cancer ‒ A systematic review. Frontiers in Oncology. 11: 704664. doi: 10.3389/fonc.2021.704664
  4. Morote J., Aguilar A., Planas J., Trilla E. 2022. Definition of castrate resistant prostate cancer: new insights. Biomedicines. 10(3): 689. doi: 10.3390/biomedicines10030689
  5. O’Brien J., Hayder H., Zayed Y., Peng C. 2018. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Frontiers in Endocrinology. 9: 402. doi: 10.3389/fendo.2018.00402
  6. Махоткин М.А., Чеботарев Д.А., Тютякина М.Г., Машкарина А.Н., Тарасов В.А., Коган М.И., Черногубова Е.А. 2021. Роль микроРНК в развитии радиорезистентности клеток рака предстательной железы (экспериментальное исследование). Онкоурология. 17(4): 85‒93. doi: 10.17650/1726-9776-2021-17-4-85-93
  7. Doghish A.S., Ismail A., El-Mahdy H.A., Elkady M.A., Elrebehy M.A., Sallam A.-A.M. 2022. A review of the biological role of miRNAs in prostate cancer suppression and progression. International Journal of Biological Macromolecules. 197: 141‒156. doi: 10.1016/j.ijbiomac.2021.12.141
  8. Sidorova E.A., Zhernov Yu.V., Antsupova M.A., Khadzhieva K.R., Izmailova A.A., Kraskevich D.A., Belova E.V., Simanovsky A.A., Shcherbakov D.V., Zabroda N.N., Mitrokhin O.V. 2023. The role of different types of microRNA in the pathogenesis of breast and prostate cancer. International Journal of Molecular Sciences. 24(3): 1980. doi: 10.3390/ijms24031980
  9. Ali Syeda Z., Langden S.S.S., Munkhzul C., Lee M., Song S.J. 2020. Regulatory mechanism of microRNA expression in cancer. International Journal of Molecular Sciences. 21(5): 1723. doi: 10.3390/ijms21051723
  10. Gujrati H., Ha S., Wang B.D. 2023. Deregulated microRNAs involved in prostate cancer aggressiveness and treatment resistance mechanisms. Cancers. 15(12): 3140. doi: 10.3390/cancers15123140
  11. Huang K., Sun X., Wu H., Zhao J., Jian Y., Xu Z., Wang S., Yang D. 2021. The regulating effect of autophagy-related miRNAs in kidney, bladder, and prostate cancer. Journal of Oncology. 2021: 5510318. doi: 10.1155/2021/5510318
  12. Ding L., Wang R., Shen D., Cheng S., Wang H., Lu Z., Zheng Q., Wang L., Xia L., Li G. 2021. Role of noncoding RNA in drug resistance of prostate cancer. Cell Death and Disease. 12(6): 590. doi: 10.1038/s41419-021-03854-x
  13. Ebrahimi S., Hashemy S.I., Sahebkar A., Aghaee Bakhtiari S.H. 2021. MicroRNA regulation of androgen receptor in castration-resistant prostate cancer: premises, promises, and potentials. Current Molecular Pharmacology. 14: 559–569. doi: 10.2174/1874467213666201223121850
  14. Labbé M., Hoey C., Ray J., Potiron V., Supiot S., Liu S.K., Fradin D. 2020. MicroRNAs identified in prostate cancer: Correlative studies on response to ionizing radiation. Molecular Cancer. 19: 63. doi: 10.1186/s12943-020-01186-6
  15. Малек А.В., Берштейн Л.М. 2015. МикроРНК: половые гормоны, гормональный канцерогенез, гормоночувствительность опухолевой ткани. Успехи молекулярной онкологии. 2(1): 004–012. doi: 10.17650/2313-805X.2015.2.1.004–012
  16. Имянитов Е.Н. 2008. Эпидемиология и биология рака простаты. Практическая онкология. 9(2): 57‒64.
  17. Fletcher C.E., Sulpice E., Combe S., Shibakawa A., Leach D.A., Hamilton M.P., Chrysostomou S.L., Sharp A., Welti J., Yuan W., Dart D.A., Knight E., Ning J., Francis J.C., Kounatidou E.E., Gaughan L., Swain A., Lupold S.E., de Bono J.S., McGuire S.E., Gidrol X., Bevan C.L. 2019. Androgen receptor-modulatory microRNAs provide insight into therapy resistance and therapeutic targets in advanced prostate cancer. Oncogene. 38(28): 5700–5724. doi: 10.1038/s41388-019-0823-5
  18. Eringyte I., Zamarbide Losada J.N., Powell S.M., Bevan C.L., Fletcher C.E. 2020. Coordinated AR and microRNA regulation in prostate cancer. Asian Journal of Urology. 7(3): 233–250. doi: 10.1016/j.ajur.2020.06.003
  19. Sikand K., Slaibi J.E., Singh R., Slane S.D., Shukla G.C. 2011. mir 488* inhibits androgen receptor expression in prostate carcinoma cells. International Journal of Cancer. 129(4): 810–819. doi: 10.1002/ijc.25753
  20. Bielska A., Skwarska A., Kretowski A., Niemira M. 2022. The role of androgen receptor and microRNA interactions in androgen-dependent diseases. International Journal of Molecular Sciences. 23(3): 1553. doi: 10.3390/ijms23031553
  21. Kashat M., Azzouz L., Sarkar S.H., Kong D., Li Y., Sarkar F.H. 2012. Inactivation of AR and Notch-1 signaling by miR-34a attenuates prostate cancer aggressiveness. American Journal of Translational Research. 4(4): 432–442.
  22. Aakula A., Leivonen S.K., Hintsanen P., Aittokallio T., Ceder Y., Borresen-Dale A.L., Perala M., Ostling P., Kallioniemi O. 2015. MicroRNA-135b regulates ERalpha, AR and HIF1AN and affects breast and prostate cancer cell growth. Molecular Oncology. 9(7): 1287–1300. doi: 10.1016/j.molonc.2015.03.001
  23. Kumar B., Khaleghzadegan S., Mears B., Hatano K., Kudrolli T.A., Chowdhury W.H., Yeater D.B., Ewing C.M., Luo J., Isaacs W.B., Marchionni L., Lupold S.E. 2016. Identification of miR-30b-3p and miR-30d-5p as direct regulators of androgen receptor signaling in prostate cancer by complementary functional microRNA library screening. Oncotarget. 7: 72593–72607. doi: 10.18632/oncotarget.12241
  24. Borrego-Diaz E., Powers B.C., Azizov V., Lovell S., Reyes R., Chapman B., Tawfik O., McGregor D., Diaz F.J., Wang X., Veldhuizen P.V. 2014. A potential regulatory loop between Lin28B: miR212 in androgen-independent prostate cancer. International Journal of Oncology. 45(6): 2421–2429. doi: 10.3892/ijo.2014.2647
  25. Bernard D., Pourtier-Manzanedo A., Gil J., Beach D.H. 2003. Myc confers androgen-independent prostate cancer cell growth. Journal of Clinical Investigation. 112(11): 1724–1731. doi: 10.1172/JCI19035
  26. Tummala R., Nadiminty N., Lou W., Zhu Y., Gandour-Edwards R., Chen H.W., Evans C.P., Gao A.C. 2013. Lin28 promotes growth of prostate cancer cells and activates the androgen receptor. American Journal of Pathology. 183(1): 288–295. doi: 10.1016/j.ajpath.2013.03.011
  27. Ramalinga M., Roy A., Srivastava A., Bhattarai A., Harish V., Suy S., Collins S., Kumar D. 2015. MicroRNA-212 negatively regulates starvation induced autophagy in prostate cancer cells by inhibiting SIRT1 and is a modulator of angiogenesis and cellular senescence. Oncotarget. 6(33): 34446–34457. doi: 10.18632/oncotarget.5920
  28. Qu F., Cui X., Hong Y., Wang J., Li Y., Chen L., Liu Y., Gao Y., Xu D., Wang Q. 2013. MicroRNA-185 suppresses proliferation, invasion, migration, and tumorigenicity of human prostate cancer cells through targeting androgen receptor. Molecular and Cellular Biochemistry. 377(1‒2): 121–130. doi: 10.1007/s11010-013-1576-z
  29. Jiang C.Y., Ruan Y., Wang X.H., Zhao W., Jiang Q., Jing Y.F., Han B.M., Xia S.J., Zhao F.J. 2016. MiR-185 attenuates androgen receptor function in prostate cancer indirectly by targeting bromodomain containing 8 isoform 2, an androgen receptor co-activator. Molecular and Cellular Endocrinology. 427: 13–20. doi: 10.1016/j.mce.2016.02.023
  30. Li X., Chen Y.T., Josson S., Mukhopadhyay N.K., Kim J., Freeman M.R., Huang W.C. 2013. MicroRNA-185 and 342 inhibit tumorigenicity and induce apoptosis through blockade of the SREBP metabolic pathway in prostate cancer cells. PLoS ONE. 8(8): e70987. doi: 10.1371/journal.pone.0070987
  31. Ma S., Chan Y.P., Kwan P.S., Lee T.K., Yan M., Tang K.H., Ling M.T., Vielkind J.R., Guan X.-Y., Chan K.W. 2011. MicroRNA-616 induces androgen-independent growth of prostate cancer cells by suppressing expression of tissue factor pathway inhibitor TFPI-2. Cancer Research. 71(2): 583–592.doi: 10.1158/0008-5472.CAN-10-2587
  32. Konduri S.D., Tasiou A., Chandrasekar N., Rao J.S. 2001. Overexpression of tissue factor pathway inhibitor-2 (TFPI-2), decreases the invasiveness of prostate cancer cells in vitro. International Journal of Oncology. 18(1): 127–131.
  33. Jiao L., Deng Z., Xu C., Yu Y., Li Y., Yang C., Chen J., Liu Z., Huang G., Li L.-C., Sun Y. 2014. miR-663 induces castrationresistant prostate cancer transformation and predicts clinical recurrence. Journal of Cellular Physiology. 229(7): 834–844. doi: 10.1002/jcp.24510
  34. Sementchenko V.I., Schweinfest C.W., Papas T.S., Watson D.K. 1998. ETS2 function is required to maintain the transformed state of human prostate cancer cells. Oncogene. 17(22): 2883–2888. doi: 10.1038/sj.onc.1202220
  35. Yang X., Yang Y., Gan R., Zhao L., Li W., Zhou H., Wang X., Lu J., Meng Q.H. 2014. Down-regulation of mir-221 and mir-222 restrain prostate cancer cell proliferation and migration that is partly mediated by activation of SIRT1. PLoS ONE. 9(6): 98833. doi: 10.1371/journal.pone.0098833
  36. Wang L., Liu C., Li C., Xue J., Zhao S., Zhan P., Lin Y., Zhang P., Jiang A., Chen W. 2015. Effects of microRNA-221/222 on cell proliferation and apoptosis in prostate cancer cells. Gene. 572(2): 252–258. doi: 10.1016/j.gene.2015.07.017
  37. Kobayashi T., Inoue T., Shimizu Y., Terada N., Maeno A., Kajita Y., Yamasaki T., Kamba T., Toda Y., Mikami Y., Yamada T., Kamoto T., Ogawa O., Nakamura E. 2010. Activation of Rac1 is closely related to androgen-independent cell proliferation of prostate cancer cells both in vitro and in vivo. Molecular Endocrinology. 24(4): 722–734. doi: 10.1210/me.2009-0326
  38. Rönnau C.G.H., Fussek S., Smit F.P., Aalders T.W., van Hooij O., Pinto P.M.C., Burchardt M., Schalken J.A., Verhaegh G.W. 2021. Upregulation of miR-3195, miR-3687 and miR-4417 is associated with castration-resistant prostate cancer. World Journal of Urology. 39(10): 3789–3797. doi: 10.1007/s00345-021-03723-4
  39. Naidoo M., Levine F., Gillot T., Orunmuyi A.T., Olapade-Olaopa E.O., Ali T., Krampis K., Pan C., Dorsaint P., Sboner A., Ogunwobi O.O. 2021. MicroRNA-1205 regulation of FRYL in prostate cancer. Frontiers in Cell and Developmental Biology. 9: 647485. doi: 10.3389/fcell.2021.647485
  40. Zhao L., Lu X., Cao Y. 2013. MicroRNA and signal transduction pathways in tumor radiation response. Cellular Signalling. 25(7): 1625–1634. doi: 10.1016/j.cellsig.2013.04.004
  41. Wang F., Mao A., Tang J., Zhang Q., Yan J., Wang Y., Di C., Gan L., Sun C., Zhang H. 2019. MicroRNA-16-5p enhances radiosensitivity through modulating cyclin D1/E1-pRb-E2F1 pathway in prostate cancer cells. Journal of Cellular Physiology. 234(8): 13182–13190. doi: 10.1002/jcp.27989
  42. Yadav S., Kowolik C.M., Lin M., Zuro D., Hui S.K., Riggs A.D., Horne D.A. 2019. SMC1A is associated with radioresistance in prostate cancer and acts by regulating epithelial-mesenchymal transition and cancer stem-like properties. Molecular Carcinogenesis. 58(1): 113–125. doi: 10.1002/mc.22913
  43. El Bezawy R., Tinelli S., Tortoreto M., Doldi V., Zuco V., Folini M., Stucchi C., Rancati T., Valdagni R., Gandellini P., Zaffaroni N. 2019. miR-205 enhances radiation sensitivity of prostate cancer cells by impairing DNA damage repair through PKCε and ZEB1 inhibition. Journal of Experimental and Clinical Cancer Research. 38(1): 51. doi: 10.1186/s13046-019-1060-z
  44. Josson S., Sung S.-Y., Lao K., Chung L.W.K., Johnstone P.A.S. 2008. Radiation modulation of microRNA in prostate cancer cell lines. Prostate. 68(15): 1599‒1606. doi: 10.1002/pros.20827
  45. Huang X., Taeb S., Jahangiri S., Emmenegger U., Tran E., Bruce J., Mesci A., Korpela E., Vesprini D., Wong C.S., Bristow R.G., Liu F.-F., Liu S.K. 2013. miRNA-95 mediates radioresistance in tumors by targeting the sphingolipid phosphatase SGPP1. Cancer Research. 73(23): 6972‒6986. doi: 10.1158/0008-5472.CAN-13-1657
  46. Hudson R.S., Yi M., Esposito D., Glynn S.A., Starks A.M., Yang Y., Schetter A.J., Watkins S.K., Hurwitz A.A., Dorsey T.H., Stephens R.M., Croce C.M., Ambs S. 2013. MicroRNA-106b-25 cluster expression is associated with early disease recurrence and targets caspase-7 and focal adhesion in human prostate cancer. Oncogene. 32(35): 4139‒4147. doi: 10.1038/onc.2012.424
  47. Li B., Shi X.-B., Nori D., Chao C.K.S., Chen A.M., Valicenti R., de Vere White R. 2011. Down-regulation of microRNA 106b is involved in p21-mediated cell cycle arrest in response to radiation in prostate cancer cells. Prostate. 71(6): 567‒574. doi: 10.1002/pros.21272
  48. Chebotarev D.A., Makhotkin M.A., Naboka A.V., Tyutyakina M.G., Cherkasova E.N., Tarasov V.A. 2019. Involvement of microRNAs in regulation of radioresistance of HeLa and DU145 cells. Russian Journal of Genetics. 55(9): 1072‒1081. doi: 10.1134/S1022795419090047
  49. Zhou J., Du T., Li B., Rong Y., Verkhratsky A., Peng L. 2015. Crosstalk between MAPK/ERK and PI3K/AKT signal pathways during brain ischemia/reperfusion. ASN Neuro. 7(5): 1759091415602463. doi: 10.1177/1759091415602463
  50. Xu J., Zhang W., Lv Q., Zhu D. 2015. Overexpression of miR-21 promotes the proliferation and migration of cervical cancer cells via the inhibition of PTEN. Oncology Reports. 33(6): 3108–3116. doi: 10.3892/or.2015.3931
  51. Macedo-Silva C., Benedetti R., Ciardiello F., Cappabianca S., Jerónimo C., Altucci L. 2021. Epigenetic mechanisms underlying prostate cancer radioresistance. Clinical Epigenetics. 13(1): 125. doi: 10.1186/s13148-021-01111-8
  52. Richardsen E., Andersen S., Al-Saad S., Rakaee M., Nordby Y., Pedersen M.I., Ness N., Ingebriktsen L.M., Fassina A., Taskén K.A., Mills I.G., Donnem T., Bremnes R.M., Busund L.T. 2019. Low expression of miR-424-3p is highly correlated with clinical failure in prostate cancer. Scientific Reports. 9(1): 10662. doi: 10.1038/s41598-019-47234-0
  53. Kim M.Y., Shin H., Moon H.W., Park Y.H., Park J., Lee J.Y. 2021. Urinary exosomal microRNA profiling in intermediate-risk prostate cancer. Scientific Reports. 11(1): 7355. doi: 10.1038/s41598-021-86785-z
  54. Jalava S.E., Urbanucci A., Latonen L., Waltering K.K., Sahu B., Janne O.A., Seppala J., Lahdesmaki H., Tammela T.L., Visakorpi T. 2012. Androgen-regulated miR-32 targets BTG2 and is overexpressed in castration-resistant prostate cancer. Oncogene. 31(41): 4460–4471. doi: 10.1038/onc.2011.624
  55. Coppola V., Musumeci M., Patrizii M., Cannistraci A., Addario A., Maugeri-Sacca M., Biffoni M., Francescangeli F., Cordenonsi M., Piccolo S., Memeo L., Pagliuca A., Muto G., Zeuner A., De Maria R., Bonci D. 2013. BTG2 loss and miR-21 upregulation contribute to prostate cell transformation by inducing luminal markers expression and epithelial-mesenchymal transition. Oncogene. 32(14): 1843–1853. doi: 10.1038/onc.2012.194
  56. Liao H., Xiao Y., Hu Y., Xiao Y., Yin Z., Liu L. 2015. microRNA-32 induces radioresistance by targeting DAB2IP and regulating autophagy in prostate cancer cells. Oncology Letters. 10(4): 2055–2062. doi: 10.3892/ol.2015.3551
  57. Verdoodt B., Neid M., Vogt M., Kuhn V., Liffers S.T., Palisaar R.J., Noldus J., Tannapfel A., Mirmohammadsadegh A. 2013. MicroRNA-205, a novel regulator of the anti-apoptotic protein Bcl2, is downregulated in prostate cancer. International Journal of Oncology. 43(1): 307‒314. doi: 10.3892/ijo.2013.1915
  58. Hulf T., Sibbritt T., Wiklund E.D., Patterson K., Song J.Z., Stirzaker C., Qu W., Nair S., Horvath L.G., Armstrong N.J., Kench J.G., Sutherland R.L., Clark S.J. 2013. Epigenetic-induced repression of microRNA-205 is associated with MED1 activation and a poorer prognosis in localized prostate cancer. Oncogene. 32(23): 2891‒2899. doi: 10.1038/onc.2012.300
  59. Tucci P., Agostini M., Grespi F., Markert E.K., Terrinoni A., Vousden K.H., Muller P.A., Dotsch V., Kehrloesser S., Sayan B.S., Giaccone G., Lowe S.W., Takahashi N., Vandenabeele P., Knight R.A., Levine A.J., Melino G. 2012. Loss of p63 and its microRNA-205 target results in enhanced cell migration and metastasisin prostate cancer. Proceedings of the National Academy of Sciences of the United States of America. 109(38): 15312‒15317. doi: 10.1073/pnas.1110977109
  60. Wang W., Liu J., Wu Q. 2016. MiR-205 suppresses autophagy and enhances radiosensitivity of prostate cancer cells by targeting TP53INP1. European Review for Medical and Pharmacological Sciences. 20(1): 92‒100.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Издательство «Наука»

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies