The Results of Experimental Studies of the Absorption of Radioisotopes 85Sr and 54Мn by Macrophyte Algae of the Barents Sea

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The high accumulating capacity of the brown littoral macroalgae of the northern seas Fucus vesiculosus in relation to two short-lived gamma-emitting radionuclides 85Sr and 54Мn has been experimentally shown. The relevance of these studies is due to the spread of technogenic radionuclides in plants of this species in the Barents Sea, the presence of potential sources of radioactivity in the coast of the Kola Peninsula and increasing attention to the use of seaweed in various spheres of life support of the population. In laboratory experiments, it was found that the studied radionuclides are strongly bound by algae tissues. No return release of the absorbed radioisotopes into the aqueous medium was recorded during the experiment. The maximum rate of isotope accumulation in F. vesiculosus was noted on the first day of the experiment, its value for 85Sr is twice as high as for 54Мn. The average specific activity of 85Sr in algae reached an equilibrium value on the 6th day of exposure, and for 54Мn on the 2nd day of exposure. The viability and functional activity of plants throughout the experiment (14 days) was confirmed by a relatively high level of photosynthesis intensity and an increase in the biomass of fucus thalloms in all experimental vessels with the addition of isotopes 85Sr and 54Мn, as well as in the control one. During the experiment, the possibility of absorption of isotopes 85Sr and 54Мn by fucus epibionts and dead plant particles was revealed, which, however, does not affect the results of the experiment. It is proposed to use the obtained results for predictive assessments of the radioecological situation in various incidents involving the use, storage and transportation of radioactive materials in the Barents Sea, and F. vesiculosus as an indicator of radioactive contamination of the environment of Arctic marine ecosystems.

About the authors

I. S Usyagina

Murmansk Marine Biological Institute of the Russian Academy of Sciences

Murmansk, Russian Federation

G. M Voskoboinikov

Murmansk Marine Biological Institute of the Russian Academy of Sciences

Email: voskoboynikov@mmbi.info
Murmansk, Russian Federation

D. V Pugovkin

Murmansk Marine Biological Institute of the Russian Academy of Sciences

Murmansk, Russian Federation

D. O Salakhov

Murmansk Marine Biological Institute of the Russian Academy of Sciences

Murmansk, Russian Federation

G. V Ilyin

Murmansk Marine Biological Institute of the Russian Academy of Sciences

Murmansk, Russian Federation

References

  1. Aarkrog A. 1994. Radioactivity in polar regions ‒ Main sources. Journal of Environmental Radioactivity. 25(1‒2): 21–35. doi: 10.1016/0265-931x(94)90005-1
  2. Поликарпов Г.Г. 1964. Радиоэкология морских организмов. М., Атомиздат: 295 с.
  3. Зотина Т.А. 2009. Распределение техногенных радионуклидов в биомассе макрофитов реки Енисей. Радиационная биология. Радиоэкология. 49(6): 729‒737.
  4. Strezov A., Nonova T. 2009. Infl uence of macroalgal diversity on accumulation of radionuclides and heavy metals in Bulgarian Black Sea ecosystems. Journal of Environmental Radioactivity. 100(2): 144–150. doi: 10.1016/j.jenvrad.2008.09.007
  5. Nonova T., Tosheva Z. 2014. Cesium and strontium in Black Sea macroalgae. Journal of Environmental Radioactivity. 129: 48–56. doi: 10.1016/j.jenvrad.2013.12.004
  6. Злобин В.С. 1966. Накопление радиоактивного стронция морскими бурыми водорослями. Гигиена и санитария. 12: 86‒88.
  7. Boisson F., Hutchins D.A., Fowler S.W., Fisher N.S., Teyssie J.-L. 1997. Infl uence of temperature on the accumulation and retention of 11 radionuclides by the marine alga Fucus vesiculosus (L.). Marine Pollution Bulletin. 35(7‒12): 313–321. doi: 10.1016/s0025-326x(97)00092-1
  8. Topcuoǧlu S. 2001. Bioaccumulation of cesium-137 by biota in different aquatic environments. Chemosphere. 44(4): 691–695. doi: 10.1016/s0045-6535(00)00290-3
  9. Bolsunovsky A., Zotina T., Bondareva L. 2005. Accumulation and release of 241Am by a macrophyte of the Yenisei River (Elodea canadensis). Journal of Environmental Radioactivity. 81(1): 33–46. doi: 10.1016/j.jenvrad.2004.10.012
  10. Матишов Г.Г., Матишов Д.Г., Намятов А.А., Зуев А.Н., Кириллова Е.А. 1997. Радионуклиды в экосистемах залива и прилегающих акваторий. В кн.: Кольский залив: океанография, биология, экосистемы, поллютанты. Апатиты, изд-во КНЦ РАН: 208‒244.
  11. Матишов Г.Г., Матишов Д.Г. 2001. Радиационная экологическая океанология. Апатиты, изд-во КНЦ РАН: 417 с.
  12. Матишов Д.Г., Касаткина Н.Е., Усягина И.С., Павельская Е.В., Дерябин А.А. 2009. Искусственные радионуклиды в экосистеме. В кн.: Кольский залив: освоение и рациональное природопользование. М., Наука: 318‒332.
  13. Воскобойников Г.М., Макаров М.В., Рыжик И.В., Малавенда С.В. 2007. Влияние абиотических факторов на структуру фитоценозов, морфологические и физиологические особенности водорослей-макрофитов Баренцева моря. В кн.: Динамика морских экосистем и современные проблемы сохранения биологического потенциала морей России. Владивосток, Дальнаука: 357‒386.
  14. Fowler S.W. 1979. Use of macroalgae as a reference material for pollutant monitoring and specimen banking. In: Monitoring Environmental Materials and Specimen Banking: Proceedings of the International Workshop, Berlin (West), 23–28 October 1978. Netherlands, Springer: 247‒261. doi: 10.1007/978-94-009-8843-9
  15. Поликарпов Г.Г., Егоров В.Н. 1986. Морская динамическая радиохемоэкология. М., Энергоатомиздат: 176 с.
  16. Новый справочник химика и технолога. Радиоактивные вещества. Вредные вещества. Гигиенические нормативы. 2004. СПб., Профессионал: 1142 с.
  17. Калистратова В.С., Беляев И.К., Жорова Е.С., Нисимов П.Г., Парфенова И.М., Тищенко Г.С., Цапков М.М. 2012. Радиобиология инкорпорированных радионуклидов. М., изд-во Федерального медицинского биофизического центра им. А.И. Бурназяна Федерального медико-биологического агентства России: 464 с.
  18. Морская радиоэкология. 1970. Киев, Наукова думка: 276 с.
  19. Сатклифф Дж.Ф. 1964. Поглощение минеральных солей растениями. М., Мир: 222 с.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Издательство «Наука»