THE SIGNIFICANCE OF RADIOACTIVE SOURCES IN THE LONG-TERM DYNAMICS OF 134Cs IN THE ATOMIC EPOCH


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The role of short-lived radioisotopes in the formation of the radioecological background in the seas of the Arctic and southern Russia is evaluated. The materials of long-term observations of the Murmansk Marine Biological Institute of the Russian Academy of Sciences and open literature sources on the content of the radioisotope 134Cs in the marine environment and biota are analyzed. The levels of its concentration in soil, lichens, algae, fish, seawater and bottom sediments are shown. The geographical features of its distribution in the marine and coastal environment are discussed. The obvious and potential sources of this radioisotope entering the marine ecosystems of the polar and southern seas of Russia are indicated. The short half-life makes 134Cs a marker of recent atmospheric precipitation. Its inclusion in the spectrum of radioactive contamination is rare, and the concentrations are insignificant. However, the harsh gamma radiation makes it one of the most dangerous elements in radiation accidents. The example of atmospheric transboundary transport of 134Cs in the northern hemisphere after the Chernobyl and Fukushima-1 accidents determines the relevance of studying the current background of this radionuclide in the marine environment and biota. It is emphasized that in the Arctic seas there is a steady tendency to reduce man-made isotopes. However, in the areas of discharge of outflow glaciers of the continental glaciations of Novaya Zemlya, Franz Josef Land, Svalbard, and Severnaya Zemlya, it is impossible to exclude the localization of weak marine pollution with this isotope. It is stated that the current radioisotope inclusions in the environment of the high-latitude Arctic are caused by the melting of glaciers that accumulated early atmospheric precipitation and local sources. In the seas of southern Russia, the inclusion of 134Cs in modern layers is due to the re-deposition of bottom sediments and occasional washouts from the catchment area. This study shows the current background of radioactive 134Cs in the ecosystems of the Sea of Azov and the seas of the Arctic shelf, the excess of which requires immediate research and search for sources of emission.

About the authors

G. G Matishov

Murmansk Marine Biological Institute of the Russian Academy of Sciences; Federal Research Centre the Southern Scientific Centre of the Russian Academy of Sciences

Email: matishov_ssc-ras@ssc-ras.ru
Murmansk, Russian Federation; Rostov-on-Don, Russian Federation

G. V Ilyin

Murmansk Marine Biological Institute of the Russian Academy of Sciences

Murmansk, Russian Federation

I. S Usyagina

Murmansk Marine Biological Institute of the Russian Academy of Sciences

Murmansk, Russian Federation

V. V Titov

Federal Research Centre the Southern Scientific Centre of the Russian Academy of Sciences

Rostov-on-Don, Russian Federation

E. E Kirillova

Federal Research Centre the Southern Scientific Centre of the Russian Academy of Sciences

Rostov-on-Don, Russian Federation

References

  1. Матишов Г.Г., Матишов Д.Г. 2001. Радиационная экологическая океанология. Апатиты, изд-во КНЦ РАН: 417 с.
  2. Matishov G., Weslawski S. 1991. Barents Sea biological resources and human impact. Map Scale: 1 : 3000 000. Oslo, Norwegian Polar Institute.
  3. Вакуловский С.М., Никитин А.И., Чумичев В.Б. 1985. О загрязнении арктических морей радиоактивными отходами западноевропейских радиохимических заводов. Атомная энергия. 58(6): 445–449.
  4. Kautsky N. 1986. Distribution and content of 137 + 134Cs and 90Sr in the water of the North Sea during the years 1982 to 1984. Deutsche Hydrografische Zeitschrift. 39: 139–159. doi: 10.1007/BF02307875.
  5. Hunt G.J., Kershaw P.J. 1990. Remobilization of artificial radionuclides from the sediment of the Irish Sea. Journal of Radiological Protection. 10(2): 147–151. doi: 10.1088/0952-4746/10/2/009.
  6. Kershaw P. J., Pentreath R.J., Woodhead D.S., Hunt G.J. 1992. A review of radioactivity in the Irish Sea. Lowestoft, Ministry of Agriculture, Fisheries and Food: 65 p.
  7. Nies H., Harms I.H., Bahe C., Karcher M.J., Dethleff D., Kuhlmann G., Oberhuber J.O., Backhaus E., Kleine E., Loewe P., Matishov D., Stepanov A., Vasiliev O.F. 1998. Anthropogenic radioactivity in the Nordic Seas and the Arctic Ocean: Results from a joint project. Deutsche Hydrographische Zeitschrift. 50(4): 313–343. doi: 10.1007/BF02764228.
  8. Никитин А.И., Катрич И.Ю., Кабанов А.И., Чумичев В.Б., Смагин В.М. 1991. Радиоактивное загрязнение Северного Ледовитого океана по результатам наблюдений в 1985–1987 гг. Атомная энергия. 71(2): 169–172.
  9. Ильин Г.В., Усягина И.С., Касаткина Н.Е. 2015. Радиоэкологическое состояние морской и наземной среды в районе губы Андреева. Атомная энергия. 118(3): 168–174.
  10. Rissanen K., Matishov G., Matishov D. 1995. Radioactivity level in Barents, Petshora, Kara, Laptev and White Seas. In: Environmental Radioactivity in the Arctic. Rundels, Finnish Center for Radiation and Nuclear Safety: 208–214.
  11. Foyn L., Nikitin A. 1993. The joint Norwegian-Russian expedition to the dumpsites for radioactive waste in the open Kara Sea, Tsivolki fjord and the Stepovogo fjord. September-October 1993. Report from the Expedition on Board R/V Victor Buinitski, with some preliminary results. 29 p.
  12. Ilus E., Sjöblom K.-L., Ikäheimonen T.K., Saxen R., Klemola S. 1993. Monitoring of radionuclides in the Baltic Sea in 1989–1990. Supplement 10 to Annual Report STUK-A89. STUK-A.103. Helsinki, Finnish Centre for Radiation and Nuclear Safety: 35 p.
  13. Sickel M.A., Selnas T.D., Christensen G.C., Strand P. 1995. Radioactivity in the Marine Environment. In: Report from the National surveillance program Strallvern Rapport. Østerås, Norwegian Radiation Protection Authority: 23–24.
  14. Матишов Г.Г., Матишов Д.Г., Назимов В.В. 1994. Уровни и основные направления переноса радионуклидов в Баренцевом и Карском морях. Карта. Масштаб 1 : 4704075. Рованиеми, изд-во ММБИ КНЦ РАН.
  15. Мирошников А.Ю., Флинт М.В., Асадулин Э.Э., Комаров В.Б. 2020. Радиационно-геохимическая устойчивость донных осадков в эстуариях Оби и Енисея и на прилегающем мелководье Карского моря. Океанология. 60(6): 930–944. doi: 10.31857/S0030157420060088
  16. Бессонов О.А., Давыдов М.Г., Марескин С.А., Малаева Т.Ю., Страдомская Е.А. 1994. Содержание радионуклидов в донных отложениях Цимлянского водохранилища. Атомная энергия. 77(1): 48–51.
  17. Рябинин А.И., Белявская В.Б., Долотова И.С. 1992. Техногенные радионуклиды и стронций в Азовском море в 1987–1988 гг. Труды государственного океанографического института. 205: 96–105.
  18. Буфетова М.В., Гаргопа Ю.М., Громов В.В., Ильин Г.В., Кавцевич Н.Н., Кренева К.В., Ларионов В.В., Лебедева Н.В., Макаревич П.Р., Маркитан Л.В., Матишов Г.Г., Матишов Д.Г., Намятов А.А., Савинова Т.Н., Фуштей Т.В. 2000. Закономерности океанографических и биологических процессов в Азовском море. Апатиты, изд-во КНЦ РАН:434 с.
  19. Strand P., Nikitin A., Rudjord A.L., Salbu B., Christensen G., Foin L., Kryshev I.I., Chumichev V.B., Dahlgaard H., Holm E. 1994. Survey of artificial radionuclides in the Barents Sea and the Kara Sea. Journal of Environmental Radioactivity. 25(1–2):99–112. doi: 10.1016/0265-931X(94)90010-8.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Издательство «Наука»