POLARIZATION SWITCHING FEATURES IN BISMUTH TITANATE FILMS WITH DIFFERENT DOMAIN STRUCTURE SPUTTERED ON A SILICON SUBSTRATE


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

The results of obtaining and studying of the structure and dielectric characteristics of layered bismuth titanate thin films with different orientation of crystallites relative to the (100)Si substrate have been presented. The (Ba, Sr)TiO3 is used as a sublayer. It has been found that, it is possible to obtain singlecrystal or textured films of layered bismuth titanate with different domain structures depending on the growth conditions and the chemical composition of the sublayer. Simultaneous measurement of the piezoresponse and capacitance-voltage characteristics made it possible to conclude that the field effect in the metal-ferroelectricsemiconductor structure is completely determined by the ferroelectric polarization due to the rearrangement of the domain structure under an external field action, and the effect of surface states is insignificant.

作者简介

V. Mukhortov

Federal Research Centre the Southern Scientific Centre of the Russian Academy of Sciences

Email: mukhortov1944@mail.ru
Rostov-on-Don, Russian Federation

Yu. Golovko

Federal Research Centre the Southern Scientific Centre of the Russian Academy of Sciences

Rostov-on-Don, Russian Federation

S. Biryukov

Federal Research Centre the Southern Scientific Centre of the Russian Academy of Sciences

Rostov-on-Don, Russian Federation

D. Stryukov

Federal Research Centre the Southern Scientific Centre of the Russian Academy of Sciences

Rostov-on-Don, Russian Federation

参考

  1. Eshita T., Wang W., Nomura K., Nakamura K., Saito H., Yamaguchi H., Mihara S., Hikosaka Y., Kataoka Y., Kojima M. 2018. Development of highly reliable ferroelectric random access memory and its Internet of Things applications. Japanese Journal of Applied Physics. 57(11S): 11UA01. doi: 10.7567/JJAP.57.11UA01
  2. Zhang W., Takahashi M., Sakai S. 2019. Investigation of ferroelectric grain sizes and orientations in Pt/CaxSr1–xBi2Ta2O9/Hf–Al–O/Si high performance ferroelectric-gate field-effecttransistors. Materials. 12(3): 399. doi: 10.3390/ma12030399
  3. Ni K., Yin X., Laguna A.F., Joshi S., Dünkel S., Trentzsch M., Müller J., Beyer S., Niemier M., Hu X.S., Datta S. 2019. Ferroelectric ternary content-addressable memory for one-shot learning. Nature Electronics. 2(11): 521–529. doi: 10.1038/s41928-019-0321-3
  4. McKee R.A., Walker F.J., Chisholm M.F. 1998. Crystalline oxides on silicon: the first five monolayers. Phys. Rev. Lett. 81(14): 3014. doi: 10.1103/PhysRevLett.81.3014
  5. Niu G., Yin S., Saint-Girons G., Gautier B., Lecoeur P., Pillard V., Hollinger G., Vilquin B. 2011. Epitaxy of BaTiO3 thin film on Si(0 0 1) using a SrTiO3 buffer layer for non-volatile memory application. Microelectronic Engineering. 88(7): 1232–1235. doi: 10.1016/j.mee.2011.03.028
  6. Müller J., Polakowski P., Müller S., Mulaosmanovic H., Ocker J., Mikolajick T., Slesazeck S., Flachowsky S., Trentzsch M. 2016. High endurance strategies for hafnium oxide based ferroelectric field effect transistor. In: 16th Non-Volatile Memory Technology Symposium (NVMTS) (Pittsburgh, Pennsylvania, USA, 17–19 October 2016). IEEE: 1–7. doi: 10.1109/NVMTS.2016.7781517
  7. Baek S.-H., Eom C.-B. 2013. Epitaxial integration of perovskitebased multifunctional oxides on silicon. Acta Materialia. 61(8): 2734–2750. doi: 10.1016/j.actamat.2012.09.073
  8. Yu Z., Ramdani J., Curless J.A., Overgaard C.D., Finder J.M., Droopad R., Eisenbeiser K.W., Hallmark J.A., Ooms W.J. 2000. Epitaxial oxide thin films on Si(001). J. Vac. Sci. Technol. B. 18(4): 2139. doi: 10.1116/1.1303737
  9. Анохин А.С., Бирюков С.В., Головко Ю.И., Мухортов В.М. 2019. Структурные и электрические характеристики двухслойных тонких пленок Bi4Ti3O12/(Ba,Sr)TiO3, осажденных на кремниевую подложку методом высокочастотного распыления при повышенных давлениях кислорода. ФТТ. 61(2): 278–283. doi: 10.21883/FTT.2019.02.47126.179
  10. Vaithyanathan V., Lettieri J., Tian W., Sharan A., Vasudevarao A., Li Y.L. 2006. с-axis oriented epitaxial BaTiO3 films on (001) Si. J. Appl. Phys. 100(2): 024108. doi: 10.1063/1.2203208
  11. Mazet L., Yang S.M., Kalinin S.V., Schamm-Chardon S., Dubourdieu C. 2015. A review of molecular beam epitaxy of ferroelectric BaTiO3 films on Si, Ge and GaAs substrates and their applications. Sci. Technol. Adv. Mater. 16(3): 036005. doi: 10.1088/1468-6996/16/3/036005
  12. Мухортов В.М., Юзюк Ю.И. 2008. Гетероструктуры на основе наноразмерных сегнетоэлектрических пленок: получение, свойства и применение. Ростов н/Д, изд-во ЮНЦ РАН: 224 с.
  13. Горшков А.П., Тихов С.В. 2013. Физика поверхности полупроводников. Нижний Новгород, изд-во Нижегородского госуниверситета: 101 с.
  14. Гуртов В.А. 2005. Твердотельная электроника. М., Техносфера: 492 с.
  15. Бирюков С.В., Головко Ю.И., Масычев С.И., Мухортов В.М., Шелепо А.П. 2009. Исследование пьезоактивности тонких пленок цирконата-титаната свинца. ЖТФ. 79(8):90–92.
  16. Reichmann A., Mitsche S., Zankel A., Poelt P., Reichmann K. 2014. In situ mechanical compression of polycrystalline BaTiO3 in the ESEM. J. Eur. Ceram. Soc. 34(10): 2211–2215. doi: 10.1016/j.jeurceramsoc.2014.03.015
  17. Yuan R., Duan L., Du X., Li Y. 2015. Identification and mechanical control of ferroelastic domain structure in rhombohedral CaMn7O12. Phys. Rev. B. 91(5): 054102. doi: 10.1103/PhysRevB.91.054102
  18. Marsilius M., Frederick J., Hu W., Tan X., Granzow T., Han P. 2012. Mechanical confinement: an effective way of tuning properties of piezoelectric crystals. Adv. Funct. Mater. 22(4):797–802. doi: 10.1002/adfm.201101301
  19. Zhu H., Chu D.P., Fleck N.A., Pane I., Huber J.E., Natori E. 2007. Polarization change of PZTN ferroelectric thin films under uniform in-plane tensile stress. Integr. Ferroelectr. 95(1):117–127. doi: 10.1080/10584580701756532
  20. Gao P., Britson J., Nelson C.T., Jokisaari J.R., Duan C., Trassin M., Baek S.-H., Guo H., Li L., Wang Y., Chu Y.-H., Minor A.M., Eom C.-B., Ramesh R., Chen L.-Q., Pan X. 2014. Ferroelastic domain switching dynamics under electrical and mechanical excitations. Nat. Commun. 5: 3801. doi: 10.1038/ncomms4801

补充文件

附件文件
动作
1. JATS XML

版权所有 © Издательство «Наука», 2022

##common.cookie##