Growth rate dependence on micronutrient provision in replacement heifers during the intrauterine period
- Authors: Safonov V.A.1, Ermilova T.E.1, Chernitskiy A.E.2
-
Affiliations:
- Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences
- Ural Federal Agrarian Scientific Research Center, Ural Branch of the Russian Academy of Sciences
- Issue: No 6 (2023)
- Pages: 59-62
- Section: Articles
- URL: https://journals.eco-vector.com/2500-2627/article/view/657812
- DOI: https://doi.org/10.31857/S2500262723060121
- EDN: https://elibrary.ru/NIISGG
- ID: 657812
Cite item
Full Text
Abstract
According to the developmental origins of health and disease (DoHaD) hypothesis, the conditions during intrauterine development have a long-term effect on postnatal growth and animal health. This study aimed to determine the relationship between fetal micronutrient provision in the last three months of intrauterine development and growth intensity indicators in the first 180 days after birth. This study focused on 40 clinically healthy Simmental heifers. Samples of non-pigmented tail hair were collected from newborns before their first colostrum feeding. The micronutrient content (selenium, copper, zinc, manganese, cobalt, iron, chromium, and molybdenum) was analyzed using inductively coupled plasma mass spectrometry (Nexion 300D, Perkin Elmer, USA). Calf weight was measured on the first day of life and at 180 days, and average daily weight gain was calculated. The relationships between the variables were analyzed using Spearman’s rank correlation coefficient in IBM SPSS Statistics 20.0 (IBM Corp., USA). No significant correlations were found between the weights of the newborn calves and the micronutrient content in their hair samples. However, at 180 days of age, calf weight and average daily weight gain (in the first 180 days of life) correlated with the selenium (r = 0.349 and r = 0.408, p < 0.05, respectively), copper (r = 0.378 and r = 0.440, p < 0.01, respectively), zinc (r = 0.455 and r = 0.481, p < 0.01, respectively), and cobalt (r = 0.304 and r = 0.344, p < 0.05, respectively) contents in the hair samples of newborns. No correlations were found for manganese, iron, chromium, and molybdenum.
Keywords
About the authors
V. A. Safonov
Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences
Email: safrus2003@mail.ru
119991, Moskva, ul. Kosygina, 19
T. E. Ermilova
Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences119991, Moskva, ul. Kosygina, 19
A. E. Chernitskiy
Ural Federal Agrarian Scientific Research Center, Ural Branch of the Russian Academy of Sciences
Email: cherae@mail.ru
620142, Yekaterinburg, ul. Belinskogo, 112a
References
- Fukuoka H. DOHaD (developmental origins of health and disease) and birth cohort research // J. Nutr. Sci. Vitaminol. 2015. Vol. 61. P. S2-S4. doi: 10.3177/jnsv.61.S2.
- Greenwood P. L., Bell A. W. Developmental programming and growth of livestock tissues for meat production // Vet. Clin. North Am. Food Anim. Pract. 2019. Vol. 35. No. 2. P. 303-319. doi: 10.1016/j.cvfa.2019.02.008.
- Van Emon M., Sanford C., McCoski S. Impacts of bovine trace mineral supplementation on maternal and offspring production and health // Animals. 2020. Vol. 10. No. 12. 2404. URL: https://www.mdpi.com/2076-2615/10/12/2404 (дата обращения: 02.09.2023). doi: 10.3390/ani10122404.
- Robinson J. J., Sinclair K. D., McEvoy T. G. Nutritional effects on foetal growth. Anim. Sci. 1999. Vol. 68. No. 2. P. 315-331. doi: 10.1017/S1357729800050323.
- Maternal mineral nutrition regulates fetal genomic programming in cattle: a review / M. Anas, W. J. Diniz, A. C. Menezes, et al. // Metabolites. 2023. Vol. 13. No. 5. 593. URL: https://www.mdpi.com/2218-1989/13/5/593 (дата обращения: 02.09.2023). doi: 10.3390/metabo13050593.
- Patel M. S., Srinivasan M. Metabolic programming in the immediate postnatal life // Ann. Nutr. Metab. 2011. Vol. 58. No. 2. P. 18-28. doi: 10.1159/000328040.
- Wu G., Imhoff-Kunsch B., Girard A. W. Biological mechanisms for nutritional regulation of maternal health and fetal development // Paediatr. Perinat. Epidemiol. 2012. Vol. 26. No. 1. P. 4-26. doi: 10.1111/j.1365-3016.2012.01291.x.
- Board-invited review: Intrauterine growth retardation: implications for the animal sciences / G. Wu, F. W. Bazer, J. M. Wallace, et al. // J. Anim. Sci. 2006. Vol. 84. No. 9. P. 2316-2337. doi: 10.2527/jas.2006-156.
- Programming of embryonic development / C. R. Dahlen, P. P. Borowicz, A. K. Ward, et al. // Int. J. Mol. Sci. 2021. Vol. 22. No. 21. 11668. URL: https://www.mdpi.com/1422-0067/22/21/11668 (дата обращения: 02.09.2023). doi: 10.3390/ijms222111668.
- Incidence risk of bronchopneumonia in newborn calves associated with intrauterine diselementosis / E. Kalaeva, V. Kalaev, A. Chernitskiy, et al. // Vet. World. 2020. Vol. 13. No. 5. P. 987-995. doi: 10.14202/vetworld.2020.987-995.
- Diselementosis as a risk factor of embryo loss in lactating cows / S. Shabunin, A. Nezhdanov, V. Mikhalev, et al. // Turk. J. Vet. Anim. Sci. 2017. Vol. 41. No. 4. P. 453-459. doi: 10.3906/vet-1609-76.
- Safonov V. A., Mikhalev V. I., Chernitskiy A. E. Antioxidant status and functional condition of respiratory system of newborn calves with intrauterine growth retardation // Agricultural Biology. 2018. Vol. 53. No. 4. P. 831-841. doi: 10.15389/agrobiology.2018.4.831eng.
- Growth-and breed-related changes of fetal development in cattle / W. H. Mao, E. Albrecht, F. Teuscher, et al. // Asian-Aust. J. Anim. Sci. 2008. Vol. 21. No. 5. P. 640-647.
- Goff J. P. Invited review: Mineral absorption mechanisms, mineral interactions that affect acid-base and antioxidant status, and diet considerations to improve mineral status // J. Dairy Sci. 2018. Vol. 101. No. 4. P. 2763-2813. doi: 10.3168/jds.2017-13112.
- Скрининг элементного состава волос у новорожденных телят как способ диагностики внутриутробного дисэлементоза / В. А. Сафонов, Т. С. Ермилова, Э. А. О. Салимзаде и др. // Ветеринария и кормление. 2022. № 5. С. 48-50. doi: 10.30917/ATT-VK-1814-9588-2022-5-14.
- Suttle N. F. Mineral nutrition of livestock. 5th ed. Boston: CABI, 2022. 600 p.
- The reference intervals of hair trace element content in Hereford cows and heifers (Bos taurus) / S. A. Miroshnikov, O. A. Zavyalov, A. N. Frolov, et al. // Biol. Trace Elem. Res. 2017. Vol. 180. No. 1. P. 56-62. doi: 10.1007/s12011-017-0991-5.
- Glover I. D., Barrett D. C., Reyher K. K. Little association between birth weight and health of preweaned dairy calves // Vet. Rec. 2019. Vol. 184. No. 15. 477. URL: https://bvajournals.onlinelibrary.wiley.com/doi/10.1136/vr.105062 (дата обращения: 02.09.2023). doi: 10.1136/vr.105062.
- Билан Е. А., Дерхо М. А. Масса тела как индикатор морфобиохимического состава крови телок в условиях интенсивной технологии выращивания // Генетика и разведение животных. 2022. № 2. С. 76-82. doi: 10. 31043/2410-2733-2022-2-75-82.
- Influence of copper on early development: prenatal and postnatal considerations / J. Y. Uriu-Adams, R. E. Scherr, L. Lanoue, et al. // Biofactors. 2010. Vol. 36. No. 2. P. 136-152. doi: 10.1002/biof.85.
- Fetal programming is deeply related to maternal selenium status and oxidative balance; experimental offspring health repercussions / M. L. Ojeda, F. Nogales, I. Romero-Herrera, et al. // Nutrients. 2021. Vol. 13. No. 6. 2085. URL: https://www.mdpi.com/2072-6643/13/6/2085 (дата обращения: 02.09.2023). doi: 10.3390/nu13062085.
Supplementary files
