Fractional composition of nickel compounds in soil and its accumulation in plants in application of growth promoting rhizosphere bacteriaon heavy metal-contaminated soil

Cover Page

Cite item

Full Text

Abstract

Impact of genus Pseudomonas bacteria on fractional composition of nickel compounds in artificially contaminated agro-gray soil and yield of spring wheat was studied in pot experiment. Plants were grown up to booting stage with NiCl2·6H2O contamination at a rate of 300 Ni/kg of soil against background of NPK fertilization. Distribution of nickel in soil fractions isolated by the method of successive selective extractions has been established. Nickel content in plants after combustion in mixture of HNO3:HClO4 (2:1)and in soil fractions was determined by inductively coupled plasma emission-optical spectrometry. Application of bacteria increased plant resistance to elevated nickel concentration and increased yield, significantly reducing heavy metal phytotoxicity. Bacteria increased nickel content in exchangeable and specifically sorbed fractions and, to a lesser extent, in fractions associated with organic matter and ferruginous minerals, and reduced metal content in residual fraction. Bacteria increased nickel uptake from soil by plant shoots due to increase in yield, without changes or increase in plant metal content. Thus, bacteria increased phytoextraction - cleaning soil from heavy metal. Nickel uptake by plants was increased due to increase in its bioavailability, mainly in exchangeable and specifically sorbed fractions.

About the authors

V. P Shabayev

Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences

Email: vpsh@rambler.ru
142290, Pushchino, Moskovskaya obl., ul. Institutskaya 2

V. E Ostroumov

Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences

142290, Pushchino, Moskovskaya obl., ul. Institutskaya 2

I. O Plekhanova

Soil Science Department Moscow State University

119991, Moskva, Leninskie gory, 1

V. O Kulikov

Soil Science Department Moscow State University

119991, Moskva, Leninskie gory, 1

M. P Volokitin

Institute Basic Biological Problems, Russian Academy of Sciences

42290, Pushchino, Moskovskaya obl., ul. Institutskaya 2

References

  1. Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Review article / R. Backer, J.S. Roken, G. Ilangumaran, et al. // Front. Plant Sci., 23 October. 2018. URL: http://www.mdpi.com/2223-7747/12/3/629 (дата обращения: 20.02.2023). doi: 10.3389/fpls.2018.01473.
  2. Plant growth promoting rhizobacteria (PGPR): Current and future prospects for development of sustainable agriculture / G. Gupta, S.S. Parihar, N.K. Ahirwar, et al. // Journal of Microbial and Biochemical Technology. 2015. Vol. 7. No. 2. P. 96-102. doi: 10.4172/1948-5948.1000188
  3. Review paper: Plant growth promoting microorganisms helping in sustainable agriculture: current perspectives / D. Mitra, S. Anđjelković, P. Panneerselvam, et al. // International Journal of Agricultural Sciences and Veterinary Medicine. 2019. Vol. 7. No. 2. P. 50-74.
  4. Phytoremediation of heavy metals contaminated soil using plant growth promoting rhizobacteria (PGPR): A current perspective / A. Handsa, V. Kumar, A. Anshumali, et al. // Recent Research in Science and Technology. 2014. Vol. 6. No. 1. P. 131-134.
  5. Microbes for Sustainable Development and Bioremediation / Eds Chandra R., Sobti R.C. Boca Raton: CRC Press. 2020. 386 p. doi: 10.1201/9780429275876
  6. Ризосферные бактерии рода Pseudomonas в современных агробиотехнологиях / Т.О. Анохина, Т.В. Сиунова, О.И. Сизова и др. // Агрохимия. 2018. № 10. С. 54-66. doi: 10.1134/S0002188118100034.
  7. Dorjey S., Dolkar D., Sharma R. Plant growth promoting rhizobacteria Pseudomonas: A review // International Journal of Current Microbiology and Applied Sciences. 2017. Vol. 6. No. 7. P. 1335-1344. doi: 10.20546/ ijcmas.2017.607.160.
  8. Pattnaik S., Mohapatra B., Gupta A. Plant growth-promoting microbe mediated uptake of essential nutrients (Fe, P, K) for crop stress management: microbe-soil-plant continuum. Review article // Frontiers in Agronomy. Vol. 09. August. 2021. URL: https://www.frontiersin.org/articles/10.3389/fagro.2021.689972/full (дата обращения 12.10.2022). doi: 10.3389/fagro.2021.689972.
  9. Novel bioformulations developed from Pseudomonas putida BSP9 and its biosurfactant for growth promotion of Brassica juncea (L.) / I. Mishra, T. Fatima, D. Egamberdieva, et al. // Plants. 2020. Vol. 9. No. 10. 1349. https:/www.mdpi.com/2223-7747/9/10/1349 (дата обращения: 22.02.2023). doi: 10.3390/plants9101349.
  10. Ma Y., Rajkumar M., Freitas H. Isolation and characterization of Ni mobilizing PGPB from serpentine soils and their potential in promoting plant growth and Ni accumulation by Brassica spp. // Chemosphere. 2009. Vol. 75. No. 6. P. 719-725. doi: 10. 1016/j. chemosphere.2009.01.056
  11. Inoculation of endophytic bacteria on host and non-host plants-effects on plant growth and Ni uptake / Y. Ma, M. Rajkumar, Y. Luo, et al. // Journal of Hazardous Materials. 2011. Vol. 195. P. 230-237. doi: 10.1016/j. jhazmat.2011.08.034
  12. Шабаев В.П. Микробиологическая азотфиксация и рост растений при внесении ризосферных микроорганизмов и минеральных удобрений // Почвенные процессы и пространственно-временная организация почв. М.: Наука, 2006. С. 195-211.
  13. Теория и практика химического анализа почв / Под ред. Л.А. Воробьевой. М.: ГЕОС, 2006. 400 c.
  14. Ладонин Д.В. Формы соединений тяжелых металлов в техногенно-загрязненных почвах. М.: Издательство Московского университета, 2019. 312 с.
  15. Ладонин Д.В., Карпухин М.М. Фракционный состав соединений никеля, меди, цинка и свинца, загрязненных оксидами и растворимыми солями металлов // Почвоведение. 2011. № 8. С. 953-965.
  16. Chemical fractions and bioavailability of nickel in alluvial soils / M. Barman, S.P. Datta, R.K. Rattan, et al. // Plant, Soil and Environment. 2015. Vol. 61. No. 1. P. 17-22. doi: 10.17221/613/2014-PSE.
  17. Zawadzka A.M., Paszczynski A.J., Crawford R.L. Transformations of toxic metals and metalloids by Pseudomonas stutzeri strain KC and its siderophore pyridine-2,6-bis (thiocarboxylic acid) // Advances in Applied Bioremediation (Soil Biology 17) / Eds. Singh A., Kuhad R.C., Ward O.P. Berlin; Heidelberg: Springer-Verlag, 2009. P. 221-238. doi: 10.1007/978- 3-540-89621-0_12.
  18. Mishra J., Singh R., Arora N. K. Alleviation of heavy metal stress in plants and remediation of soil by rhizosphere microorganisms // Frontiers in Microbiology. 2017. Vol.8. URL: http://www.frontiersin.org/articles/10.3389/fmicb.2017.01706/full. (дата обращения: 15.11.2022). doi: 10.3389/fmicb.2017.01706.
  19. Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: A review / A. Ullah, S. Heng, M.F.H. Munis, et al. // Environmental and Experimental Botany. 2015. Vol. 117. P. 28-40. doi: 10. 1016/j.envexpbot.2015.05.001.
  20. Jakubus M., Graczyk M. Availability of nickel in soil evaluated by various chemical extractants and plant accumulation // Agronomy. 2020. Vol. 10. No. 11. 1805. URL: http://www.mdpi.com/2073.4395/10/11/1805. (дата обращения: 20.02.2023). doi: 10.3390/ agronomy10111805.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Russian Academy of Sciences