Spring wheat yield under application of growth promoting rhizobacterium in soil contaminated with nickel

Cover Page

Cite item

Full Text

Abstract

Impact of growth promoting rhizobacterium Pseudomonas fluorescens 20 on the yield of spring wheat was studied in pot experiment. Plants were grown up to maturity when agrogray soil was contaminated with Ni as NiCl2·6H2O at a rate of 200 mg Ni/kg of soil against background of applying NPK fertilizers. After harvesting, content of nutrients N, P, K, Ca, Mg, Fe, Mn, Zn and Cu in grain, straw and roots was determined. N was determined by phenol technique. Resistance of plants to Ni toxicity was found under bacterial inoculation. Application of bacterium eliminated phytotoxicity of heavy metal and provided the same biomass production including grain as in control - in non-inoculated plants non-exposed Ni stress. Resistance of plants inoculated with bacterium to Ni toxicity was due to enhanced growth of root system and increase in content and accumulation of Ni in roots and, as a result this was not accompanied by increase in metal incorporation into aboveground organs. Resistance of plants inoculated with bacterium to Ni toxicity was due to enhanced growth of root system and increase in content and accumulation of Ni in roots. Application of bacterium also improved mineral nutrition of plants - increased nutrient uptake from contaminated soil. Increase in nutrient uptake by yield from contaminated soil as influenced by inoculation with bacterium was due to growth promotion and increase of plant weight in general without significant changes in content of most elements in aboveground organs and roots. Bacterium enhanced phytoextraction of heavy metal (soil cleaning) - increased Ni uptake by aboveground organs without significant changes in its content in grain and straw. Increase in Ni uptake by bacterially inoculated plants occurred without changes of soil medium reaction and was probably due to production of bacterial siderophores.

About the authors

V. P Shabayev

Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences

Email: vpsh@rambler.ru
142290, Moskovskaya obl., Pushchino, ul. Institutskaya, 2

V. E Ostroumov

Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences

142290, Moskovskaya obl., Pushchino, ul. Institutskaya, 2

References

  1. Phytoremediation of heavy metals contaminated soil using plant growth promoting rhizobacteria (PGPR): A current perspective / A. Handsa, V. Kumar, A. Anshumali, et al. // Recent Research in Science Technology. 2014. Vol. 6. No. 1. P. 131-134.
  2. Beneficial microbes for sustainable agriculture / A. K. Chandel, H. Chen, H. Ch. Sharma, et al. /eds. Chandra R., Sobti R.C. // Microbes for sustainable development and bioremediation. Chapter 15. P. 257-266. Boca Raton: CRC Press, 2020. 386 p. doi: 10.1201/9780429275876-15.
  3. Dorjey S., Dolkar D., Sharma R. Plant growth promoting rhizobacteria Pseudomonas: A review // International Journal of Current Microbiology and Applied Sciences. 2017. Vol. 6. No. 7. P. 1335-1344. doi: 10.20546/ijcmas.2017.602.160.
  4. Pattnaik S., Mohapatra B., Gupta A. Plant growth-promoting microbe mediated uptake of essential nutrients (Fe, P, K) for crop stress management: microbe-soil-plant continuum. Review article // Frontiers in Agronomy. 09 August 2021. URL:. https://www.frontiersin.org/articles/10.3389/fagro.2021.689972/full (дата обращения 12.10.2022). doi: 10.3389/fagro.2021.689972.
  5. Developing novel bacterial based bioformulation having PGPR properties for enhanced production of agricultural crops / M. Kalita, M. Bharadwaz, T. Dey, et al. // Indian Journal of Experimental Biology. 2015. Vol. 53. No. 1. P. 56-60.
  6. Plant growth promoting rhizobacteria (PGPR): Current and future prospects for development of sustainable agriculture / G. Gupta, S. S. Parihar, N. K. Ahirwar, et al. // Journal of Microbial and Biochemical Technology. 2015. Vol.7, No. 2. P. 96-102. doi: 10.4172/1948-5948.1000188.
  7. Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Review article / R. Backer, J. S. Rokern, G. Ilangumaran, et al. // Frontiers in Plant Science. 2018. Vol. 23. URL:. https://www.frontiersin.org/articles/10.3389/fpls.2018.01473/full (дата обращения 15.09.2022). doi: 10.3389/fpls.2018.01473
  8. Ризосферные бактерии рода Pseudomonas в современных агробиотехнологиях / Т. О. Анохина, Т. В. Сиунова, О. И. Сизова и др. // Агрохимия. 2018. № 10. С. 54-66. doi: 10.1134/S0002188118100034.
  9. Шабаев В. П., Остроумов В. Е. Рост и минеральное питание яровой пшеницы при внесении ростстимулирующей ризосферной бактерии в условиях загрязнения почвы никелем // Российская сельскохозяйственная наука. 2021. № 5. С. 46-50. doi: 10.31857/S2500262721050094.
  10. Tolerance of transgenic canola plants (Brassica napus) amended with plant growth-promoting bacteria to flooding stress at a metal-contaminated field site / A. J. Farwell, S. Vesely, V. Nero, et al. // Environmental Pollution. 2007. Vol. 147. No. 3. P. 540-545. doi: 10.1016/j.envpol. 2006.10.014.
  11. Nickel toxicity in plants: reasons, toxic effects, tolerance mechanisms, and remediation possibilities - a review / M.U.Hassan, M.U.Chattha, I.Khan, et al. // Environmental Science and Pollution Research. 2019. Vol. 26. No. 13. P. 12673-12688. doi: 10.1007/s11356-019-04892-x.
  12. Шабаев В. П. Почвенно-агрохимические аспекты ремедиации загрязненной свинцом почвы при внесении стимулирующих рост растений ризосферных бактерий // Почвоведение. 2012. № 5. С. 601-611.
  13. Шабаев В. П., Бочарникова Е. А., Остроумов В. Е. Ремедиация загрязненной кадмием почвы при применении стимулирующих рост растений ризобактерий и природного цеолита // Почвоведение. 2020. № 6. С. 738-750. doi: 10.31857/S0032180X20060118.
  14. Tank N., Saraf M. Enhancement of plant growth and decontamination of nickel-spiked soil using PGPR // Journal of Basic Microbiology. 2009. Vol. 49. No. 2. P. 195-204. doi: 10.1002/jobm.200800090.
  15. Inoculation of endophytic bacteria on host and non-host plants-effects on plant growth and Ni uptake / Y. Ma, M. Rajkumar, Y. Luo, et al. // Journal of Hazardous Materials. 2011. Vol. 195. P. 230-237. doi: 10.1016/j.jhazmat.2011.08.034.
  16. Rajkumar M., Freitas H. Effects of inoculation of plant-growth promoting bacteria on Ni uptake by Indian mustard // Bioresource Technology. 2008. Vol. 99. No. 9. P. 3491-3498. doi: 10.1016/j.biortech.2007.07.046.
  17. Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: A review / A. Ullah, S. Heng, M. F. H. Munis, et al. // Environmental and Experimental Botany. 2015. Vol. 117. P. 28-40. doi: 10.1016/j.envexpbot.2015.05.001.
  18. Титов А. Ф., Казнина Н. М., Таланова В. В. Тяжелые металлы и растения. Петрозаводск: Карельский научный центр РАН. 2014. 194 с.
  19. Mishra J., Singh R., Arora N. K. Alleviation of heavy metal stress in plants and remediation of soil by rhizosphere microorganisms. // Frontiers in Microbiology. 2017. September URL: http://www.frontiersin.org/articles/10.3389/fmicb.2017.01706/full. (дата обращения: 15.11.2022).
  20. Zawadzka A. M., Paszczynski A. J., Crawford R.L. Transformations of toxic metals and metalloids by Pseudomonas stutzeri strain KC and its siderophore pyridine-2,6-bis (thiocarboxylic acid) // Advances in Applied Bioremediation (Soil Biology 17) / eds. A. Singh, R.C. Kuhad, O.P. Ward. Berlin; Heidelberg: Springer-Verlag, 2009. P. 221-238. doi: 10.1007/978-3-540-89621-0_12.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Russian Academy of Sciences