Effect of heavy metals on changes in the biochemical profile of pea root exudates

Cover Page

Cite item

Full Text

Abstract

By HPLC analysis, a comparative assessment of changes in the qualitative and quantitative indicators of the biochemical composition of low molecular weight root exometabolites in three different genotypes of peas (SGE, SGECDt and Sofya) at an early stage of vegetation under the influence of introducing into the environment toxic concentrations of heavy metals in the form of chlorides (cadmium and/or cobalt - 4 µM / 40 µM). Contamination of the nutrient substrate with salts of heavy metals caused an increase in the total yield of sugars and amino acids in the SGE and SGECDt genotypes. In the variety Sofya, this effect was manifested only in relation to sugars. No statistically significant difference was found in the total yield of organic acids between the three genotypes. Cluster analysis and principal component analysis identified a unique pea mutant SGECDt against the background of other genotypes with the joint introduction of salts of both heavy metals into the nutrient medium. A fractal analysis of the degree of structuredness of root exudation, using the example of the largest fraction of amino acids in terms of the number of components included in it, showed that the values of the correlation coefficients demonstrate an increase in the total plant biomass with a decrease in the indices of biosystemic determination. The lowest indicator of the plant system consolidation index in the absence of stress was found in the variety Sofya. Under the influence of HM, this numerical value did not change in any way, which may indicate the stagnation of plant growth and the transition to a state close to anabiosis. This can also be judged from the data of growth inhibition in the genotype and a decrease in the yield of amino acids. In the presence of HMs individually, the index of determination on pea SGE individually decreased, while in the SGECdt mutant, on the contrary, it increased. The combined effect of metals on SGECdt was multiplicative. Based on these indicators, it can be judged that the plant spends more energy to attract potential beneficial microflora in order to form an effective symbiosis and successfully counter metal-induced stress.

About the authors

J. V Puhalsky

All-Russia Research Institute for Agricultural Microbiology

Email: puhalskyyan@gmail.com
196608, Sankt-Peterburg, Pushkin, sh. Podbel’skogo, 3

S. I Loskutov

VNIIIPD - a branch of the Federal Scientific Center for Food Systems named after V.M. Gorbatova Russia Academy of Sciences

191014, Sankt-Peterburg, Liteinyi pr., 55

N. I Vorobyov

All-Russia Research Institute for Agricultural Microbiology

196608, Sankt-Peterburg, Pushkin, sh. Podbel’skogo, 3

M. A Chukaeva

Saint Petersburg Mining University

199106, Sankt-Peterburg, 21-ya liniya V.O., 2

D. O Nagornov

Saint Petersburg Mining University

199106, Sankt-Peterburg, 21-ya liniya V.O., 2

A. I Shaposhnikov

All-Russia Research Institute for Agricultural Microbiology

196608, Sankt-Peterburg, Pushkin, sh. Podbel’skogo, 3

T. S Azarova

All-Russia Research Institute for Agricultural Microbiology

196608, Sankt-Peterburg, Pushkin, sh. Podbel’skogo, 3

A. P Kozhemyakov

All-Russia Research Institute for Agricultural Microbiology

196608, Sankt-Peterburg, Pushkin, sh. Podbel’skogo, 3

References

  1. Inderjit, Weston L.A. Root Exudates: An Overview. Root Ecology. Ecological Studies (Analysis and Synthesis). Berlin: Springer-Heidelberg, 2003. Vol. 168. P. 235-255. doi: 10.1007/978-3-662-09784-7_10
  2. Root biomass and exudates link plant diversity with soil bacterial and fungal biomass / N. Eisenhauer, A. Lanoue, T. Strecker, et al. // Sci. Rep. 2017. Vol. 7. URL: https://www.nature.com/articles/srep44641/(дата обращения: 19.06.2022). doi: 10.1038/srep44641
  3. Helal H.M., Sauerbeck D. Effect of plant roots on carbon metabolism of soil microbial biomass // Zeitschrift Für Pflanzenernährung Und Bodenkunde. 1986. Vol. 149. No 2. P. 181-188. doi: 10.1002/jpln.19861490205
  4. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly / K. Zhalnina, K.B. Louie, Z. Hao, et al. // Nat. Microbiol. 2018. Vol. 3. P. 470-480. doi: 10.1038/s41564-018-0129-3
  5. Root exudation of primary metabolites: mechanisms and their roles in plant responses to environmental stimuli / A. Canarini, W. Wanek, A. Merchant, et al. // Front. Plant Sci. 2018. Vol. 10. No 157. URL: https://www.frontiersin.org/articles/10.3389/fpls.2019.00157/full/(дата обращения: 19.06.2022). doi: 10.3389/fpls.2019.00157
  6. Root exudation of sugars, amino acids, and organic acids by maize as affected by nitrogen, phosphorus, potassium, and iron deficiency / L.C. Carvalhais, P.G. Dennis, D. Fedoseyenko, et al. //j. Plant. Nutr. Soil Sci. 2011. Vol. 174. P. 3-11. doi: 10.1002/jpln.201000085
  7. Gransee A. Effects of root exudates on nutrient availability in the rhizosphere. Plant Nutrition. Developments in Plant and Soil Sciences. Holland: Springer, 2001. P. 626-627. doi: 10.1007/0-306-47624-X_303
  8. Nutrient availability in the rhizosphere: a review / T. Mimmo, Y. Pii, F. Valentinuzzi, et al. // Acta Hortic. 2018. Vol. 1217. P. 13-28. doi: 10.17660/ActaHortic.2018.1217.2
  9. Effects of cadmium stress on growth, anatomy and hormone contents in Glycine max (L.) Merr. / M.V. Perez Chaca, A. Vigliocco, H. Reinoso, et al. // Acta Physiol Plant. 2014. Vol. 36. P. 2815-2826. doi: 10.1007/s11738-014-1656-z
  10. Cadmium: toxicity and tolerance in plants / S.A. Hasan, Q. Fariduddin, B. Ali, et al. //j. Environ. Biol. 2009. Vol. 30. No 2. P. 165-174.
  11. Ранжирование химических элементов по их экологической опасности для почвы / С.И. Колесников, К.Ш. Казеев, В.Ф. Вальков и др. // Доклады Российской Академии сельскохозяйственных наук. 2010. № 1. С. 27-29.
  12. Елькина Г.Я. Реакция растений на полиэлементное загрязнение подзолистых почв тяжелыми металлами // Агрохимия. 2017. Т. 7. С. 78-85.
  13. Combined toxicity and underlying mechanisms of a mixture of eight heavy metals / Q. Zhou, Y. Gu, X. Yue, et al. // Mol. Med. Rep. 2017. Vol. 15. No 2. P. 859-866. doi: 10.3892/mmr.2016.6089
  14. A review of toxicity and mechanisms of individual and mixtures of heavy metals in the environment / X. Wu, S.J. Cobbina, G. Mao, et al. // Environ. Sci. Pollut. Res. 2016. Vol. 23. P. 8244-8259. doi: 10.1007/s11356-016-6333-x
  15. Cadmium spiked soil modulates root organic acids exudation and ionic contents of two differentially Cd tolerant maize (Zea mays L.) cultivars / M.T. Javed, M.S. Akram, K. Tanwir, et al. // Ecotoxicol Environ Saf. 2017. Vol. 141. P. 216-225. doi: 10.1016/j.ecoenv.2017.03.027
  16. Seshadri B., Bolan N., Naidu R. Rhizosphere-induced heavy metal(loid) transformation in relation to bioavailability and remediation //j. Soil Sci. Plant Nutr. 2015. Vol. 15. No 2. URL: https://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-95162015005000043&lng=en&nrm=iso&tlng=en/(дата обращения: 19.06.2022). doi: 10.4067/s0718-95162015005000043
  17. Exogenous treatment with salicylic acid attenuates cadmium toxicity in pea seedlings / L.P. Popova, L.T. Maslenkova, R.Y. Yordanova, et al. // Plant Physiol. Biochem. 2009. Vol. 47. P. 224-231. doi: 10.1016/j.plaphy.2008.11.007
  18. Sugiyama A., Yazaki K. Root exudates of legume plants and their involvement in interactions with soil microbes. Secretions and Exudates in Biological Systems, Signaling and Communication in Plants. Berlin: Springer-Verlag, 2012. P. 27-48. doi: 10.1007/978-3-642-23047-9_2.
  19. A chemically induced new pea (Pisum sativum L.) mutant SGECDt with increased tolerance to and accumulation of cadmium / V.E. Tsyganov, A.A. Belimov, A.Y. Borisov, et al. // Ann. Bot. 2007. Vol. 99. P. 227-237. doi: 10.1093/aob/mcl261
  20. A sterile hydroponic system for characterising root exudates from specific root types and whole-root systems of large crop plants / A. Kawasaki, S. Okada, C. Zhang, et al. // Plant Methods. 2018. Vol. 14. URL: https://plantmethods.biomedcentral.com/articles/10.1186/s13007-018-0380-x/(дата обращения: 19.06.2022). doi: 10.1186/s13007-018-0380-x
  21. Evaluation of a novel tool for sampling root exudates from soil-grown plants compared to conventional techniques / E. Oburger, M. Dell‘mour, S. Hann, et al. // Environ. Exp. Bot. 2013. Vol. 87. P. 235-247. doi: 10.1016/j.envexpbot.2012.11.007
  22. Sharakshane A. An easy estimate of the PFDD for a plant illuminated with white LEDs: 1000 lx = 15 μmol/s/m2 // BioRxiv. 2018. URL: https://www.biorxiv.org/content/10.1101/289280v1.full/(дата обращения: 19.06.2022). doi: 10.1101/289280
  23. Лаврентьева Г.В., Круглов С.В., Анисимов В.С. Динамика катионного состава почвенного раствора известкованной дерново-подзолистой почвы при загрязнении Co и Cd и изменении pH // Почвоведение. 2008. № 9. С. 1092-1100. doi: 10.1134/S106422930809007X
  24. Кондратьев М.Н., Роньжина Е.С., Ларикова Ю.С. Влияние абиотических стрессов на метаболизм вторичных соединений в растениях // Известия КГТУ. 2018. Т.49. С. 203-219.
  25. Quantitative changes in protein expression of cadmium-exposed poplar plants / P. Kieffer, J. Dommes, L. Hoffmann, et al. // Proteomics. 2008. Vol. 8. P. 2514-2530. doi: 10.1002/pmic.200701110
  26. Effects of Cadmium Exposure on Growth and Metabolic Profile of Bermudagrass (Cynodon dactylon (L.) Pers.) / Y. Xie, L. Hu, Z. Du, et al. // PLoS One. 2014. Vol. 9. URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0115279/(дата обращения: 19.06.2022). doi: 10.1371/journal.pone.0115279
  27. Glucose alleviates cadmium toxicity by increasing cadmium fixation in root cell wall and sequestration into vacuole in Arabidopsis / Y.Z. Shi, X.F. Zhu, J.X. Wan, et al. // JIPB. 2015. Vol. 57. P. 830-837. doi: 10.1111/jipb.12312
  28. Wang S., Mulligan C.N. Effects of three low-molecular-weight organic acids (LMWOAs) and pH on the mobilization of arsenic and heavy metals (Cu, Pb, and Zn) from mine tailings // Environ Geochem Health. 2013. Vol. 35. No 1. P. 111-118. doi: 10.1007/s10653-012-9461-3
  29. Dynamics of three organic acids (malic, acetic and succinic acid) in sunflower exposed to cadmium and lead / Z. Niu, X. Li, L. Sun, et al. // Int. J. Phytoremediation. 2013. Vol. 15. No 7. P. 690-702. doi: 10.1080/15226514.2012.723066
  30. The significance of methionine, histidine and tryptophan in plant responses and adaptation to cadmium stress / V. Zemanova, M. Pavlik, D. Pavlikova, et al. // Plant Soil Environ. 2014. Vol. 60. No 9. P. 426-432. doi: 10.17221/544/2014-PSE

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Russian Academy of Sciences