Research of the method of selective laser sintering for strengthening soil tillage working organs

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

One of the technologies for increasing the service life of working bodies is applying a hardening layer with a material that is more resistant to wear. The study was conducted to evaluate the efficiency of the selective laser sintering (SLS) method for hardening soil-cultivating working bodies. The plasma-powder surfacing method was considered as a comparison option. The studies were conducted on a circular soil test bench, which was a rotor with racks rotating in a cylinder filled with an abrasive medium for rapid surface wear, on which samples were attached. Four experimental samples made of 30KhGSA steel were studied. The dimensions of the hardening layer were determined by calculation. After that, it was applied with P6M5 metal powder using the SLS method to 2 samples, one was hardened before heat treatment, the second after. Similarly, but using FBH-6-2 powder, 2 samples were made using plasma-powder surfacing. The bench test duration was 152 h. The linear wear of the samples when hardened by the SLS method before heat treatment was 1.3 mm, after heat treatment – 0.83 mm, by the plasma method – 1.1 mm and 1.2 mm, respectively. The hardness values that stand out from the others, with the SLS method are observed in the hardening layer zone: the sample before heat treatment is 65 HRC, after it – 73 HRC. With the plasma method, the difference in hardness is observed in the zone near the hardening layer: before heat treatment – 45 HRC, after – 35 HRC. The use of the selective laser sintering method for hardening the blade part of the experimental samples ensured a decrease in the consumption of metal powder, in comparison with the plasma method, by 32 %, an increase in wear resistance of the samples according to the calculated data – by 26 %, on the circular soil stand – by 24 %.

全文:

受限制的访问

作者简介

D. Mironov

Federal Scientific Agricultural Engineering Center of the All-Russian Mechanization Institute

编辑信件的主要联系方式.
Email: nano.otdel@mail.ru

кандидат технических наук

俄罗斯联邦, Moscow

A. Lamm

Federal Scientific Agricultural Engineering Center of the All-Russian Mechanization Institute

Email: nano.otdel@mail.ru

младший научный сотрудник

俄罗斯联邦, Moscow

R. Rasulov

Federal Scientific Agricultural Engineering Center of the All-Russian Mechanization Institute

Email: nano.otdel@mail.ru

младший научный сотрудник

俄罗斯联邦, Moscow

参考

  1. Сидоров С. А. Сельхозмашиностроению – качественные материалы // Сельскохозяйственные машины и технологии. 2010. № 2. С. 41.
  2. Миронов Д. А., Ламм А. К., Расулов Р. К. Оценка эффективности почвообрабатывающих рабочих органов по критерию износостойкости // Вестник Башкирского государственного аграрного университета. 2023. № 1 (65). С. 145–150.
  3. Миронова А. В. Технологические и физико-механические свойства задерненных почв // Сельскохозяйственные машины и технологии. 2022. Т. 16. № 1. С. 63–68.
  4. Миронова А. В. Обработка задернелых и деградированных почв // Электротехнологии и электрооборудование в АПК. 2019. № 2 (35). С. 57–62.
  5. Лискин И. В., Миронова А. В. Обоснование искусственной почвенной среды для лабораторных исследований износа и тяговых характеристик почворежущих рабочих органов // Сельскохозяйственные машины и технологии. 2020. Т. 14. № 3. С. 53–58.
  6. Повышение ресурса и стойкости к абразивному изнашиванию долот лемехов наплавкой электродами с борсодержащей обмазкой / В. Ф. Аулов, В. П. Лялякин, А. М. Михальченков и др. // Сварочное производство. 2019. № 7. С. 28–31.
  7. Новые виды коррозионно-стойких биметаллов и технологии их производства / А. Ю. Измайлов, Я. П. Лобачевский, С. А. Сидоров и др. // Сельскохозяйственные машины и технологии. 2014. № 4. С. 7–12.
  8. Лялякин В. П., Слинко Д. Б., Денисов В. А. Получение композиционных покрытий электродуговым напылением порошковыми проволоками // Технология металлов. 2021. № 12. С. 16–21.
  9. Сидоров С. А. Применение наноплазменных технологий нанесения покрытий и обработки материалов деталей сельхозмашин // Сельскохозяйственные машины и технологии. 2009. № 2. С. 42–44.
  10. Сидоров С. А., Миронов Д. А., Лискин И. В. Круговой почвенный стенд. Патент на изобретение RU 2613292 C, 15.03.2017. Заявка № 2015154117 от 17.12.2015.
  11. Лобачевский Я. П., Старовойтов С. И. Оптимальный профиль передней поверхности чизельного рабочего органа // Сельскохозяйственные машины и технологии. 2018. Т. 12. № 2. С. 26–30.
  12. Старовойтов С. И., Гринь А. М. Плужный корпус для прецизионной обработки почвы // Сельскохозяйственные машины и технологии. 2022. Т. 16. № 1. С. 47–52.
  13. Анализ тягового сопротивления элементов цилиндроидального плужного корпуса / Я. П. Лобачевский, В. Ф. Комогорцев, С. И. Старовойтов и др. // Сельскохозяйственные машины и технологии. 2016. № 2. С. 11–15.
  14. The trend of tillage equipment development / S. I. Starovoytov, B. H. Akhalaya, S. A. Sidorov et al/ // AMA, Agricultural Mechanization in Asia, Africa and Latin America. 2020. Vol. 51. No. 3. P. 77–81.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Circular soil stand: 1 - frame, 2 - drive mechanism, 3 - compacting rollers, 4 - weights, 5 - rippers, 6 - water reservoir, 7 - dripper, 8 - circular soil channel, 9 - fixture for fixing test specimens, 10 - socket for installation, 11 - test specimen

下载 (135KB)
3. Fig. 2. Model of sample heating during hardening: a) plasma-powder surfacing (sample No. 1, No. 4); b) selective laser sintering (sample No. 2, No. 3): a - protective layer zone, b - 10 mm from the surfacing, c - sample base

下载 (48KB)
4. Fig. 3. Experimental specimens (top - initial state, bottom - worn state) hardened by plasma-powder surfacing in compressed air (a - specimen No. 4; b - specimen No. 1) and by selective laser sintering (c - specimen No. 2; d - specimen No. 3)

下载 (218KB)

版权所有 © Russian Academy of Sciences, 2024