Creation of Oryza sativa L. doubled haployds with the Pi-b gene of rice blast resistance in the Russian Far East
- Authors: Ilyushko M.V.1, Guchenko S.S.1
-
Affiliations:
- Chaika Federal Scientific Center for Agrobiotechnology of the Far East
- Issue: No 2 (2025)
- Pages: 27-31
- Section: Crop production, plant protection and biotechnology
- URL: https://journals.eco-vector.com/2500-2627/article/view/684083
- DOI: https://doi.org/10.31857/S2500262725020058
- EDN: https://elibrary.ru/DEHYIN
- ID: 684083
Cite item
Abstract
The study was conducted with the aim of obtaining doubled haploids with the Pi-b gene for rice Oryza sativa L. breeding. As a result of hybridization between Far Eastern varieties and the Oxy 2x sample (carrier of the Pi-b gene), 13 F1 hybrids of six hybrid combinations were created: Sadko×Oxy 2x, Lugovoy×Oxy 2x, Darius 23×Oxy 2x, Almaz×Oxy 2x, doubled haploid (Don 4237×Dolinny)×Oxy 2x, Khankaisky 429×Oxy 2x. In vitro androgenesis technology was used to transfer the original F2 donor plants to a constant homozygous state. 35 hybrid plants carrying the resistance allele of the Pi-b gene were preliminarily selected. 10246 rice anthers were introduced into the in vitro culture. Callus formation was observed in 25 of 35 F2 hybrids. The highest callus formation values were noted in the hybrid plants Lugovoy×Oxy 2x – 9.33 % and Khankaisky 429×Oxy 2x – 27.50 %, and on average for the entire sample it was low – 2.45 %, which is not typical for Far Eastern genotypes. Regeneration was observed on calli of seven rice hybrids of four hybrid combinations: Darius 23×Oxy 2x, Sadko×Oxy 2x, Khankaisky 429×Oxy 2x and Lugovoy×Oxy 2x. Based on the results of PCR analysis, 33 plants with the resistance allele of the Pi-b gene were selected from 63 rice doubled haploids. 44 lines of doubled haploids were sown on the vegetation plot, three of which did not sprout. The collection sample Oxy 2x, being itself with a strong attachment of the grain to the panicle axis, interacting with the loci of other varieties responsible for the strength of the grain attachment, produces a phenotypes that fall of to varying degrees in the homozygous state in doubled haploids: 11 lines with an average degree of shedding, 30 lines with strong shedding. Thus, the total yield of the initial breeding material for subsequent selections in field conditions is very limited and unpromising due to the falling of the grain.
Full Text

About the authors
M. V. Ilyushko
Chaika Federal Scientific Center for Agrobiotechnology of the Far East
Author for correspondence.
Email: ilyushkoiris@mail.ru
кандидат биологических наук
Russian Federation, 692539, Primorskii krai, pos. Timiryazevskii, ul. Volozhenina, 30S. S. Guchenko
Chaika Federal Scientific Center for Agrobiotechnology of the Far East
Email: ilyushkoiris@mail.ru
Russian Federation, 692539, Primorskii krai, pos. Timiryazevskii, ul. Volozhenina, 30
References
- Ковалевская В. А., Лелявская В. Н., Ковалева А. А. Устойчивость риса к пирикуляриозу в Приморском крае // Защита и карантин растений. 2013. № 5. С. 24–26.
- Molecular breeding strategy and challenges towards improvement of blast disease resistance in rice crop / S. Ashkani, M. Y. Rafii, M. Shabanimofrad, et al. // Frontiers in Plant Science. 2015. Vol. 5. Article 886. URL: https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2015.00886/full (дата обращения: 18.12.2021). doi: 10.3389/fpls.2015.00886.
- Current status of conventional and molecular interventions for blast resistance in rice / D. Srivastava, M. Shamim, M. Kumar, et al. // Rice Science. 2017. Vol. 24. No. 6. P. 299–321. doi: 10.1016/j.rsci.2017.08.001.
- Ecology of rice viruses in the south of the Russian Far East / Y. G. Volkov, N. N. Kakareka, V. F. Tolkach, et al. // Rice Research. 2024. Vol. 12. Article 409. URL: https://www.omicsonline.org/open-access/ecology-of-rice-viruses-in-the-south-of-the-russian-far-east.pdf (дата обращения: 19.02.2025). doi: 10. 4172/2375-4338.1000409.
- Клименкова Т. Г., Михайлик Т. А., Лелявская В. Н. Оценка сортообразцов и сортов риса на устойчивость к пирикуляриозу // Дальневосточный аграрный вестник. 2018. № 4(48). С. 67–74. doi: 10.24411/1999-6837-2018-14082.
- Устойчивость образцов конкурсного сортоиспытания и сортов риса Oryza sativa L. дальневосточной селекции к пирикуляриозу / М. В. Илюшко, С. С. Гученко, В. Н. Лелявская, и др. // Российская сельскохозяйственная наука. 2022. № 1. С. 19–22. doi: 10.31857/S2500262722010045.
- Comprehensive evaluation of resistance effects of pyramiding lines with different broad-spectrum resistance genes against Magnaporthe oryzae in rice (Oryza sativa L.) / Y. Wu, N. Xiao, Y. Chen, et al. // Rice. 2019. Vol. 12. Article 11. URL: https://thericejournal.springeropen.com/articles/10.1186/s12284-019-0264-3 (дата обращения: 15.04.2020). doi: 10.1186/s12284-019-0264-3.
- Molecular screening of blast resistance genes in rice germplasms resistant to Magnaporthe oryzae / Y. Loang, B. Yan, Y. Peng, et al. // Rice Science. 2017. Vol. 24. No. 1. P. 41–47. doi: 10.1016/j.rsci.2016.07.004.
- Влияние фертильности пыльцы гибридных растений доноров на андрогенез in vitro риса Oryza sativa L. / М. В. Илюшко, С. С. Гученко, В. Н. Лелявская и др. // Рисоводство. 2023. № 2(59). С. 6–12. doi: 10.33775/1684-2464-2023-59-2-6-12.
- Comparison of pathogenicity of Pyricularia oryzae under different genetic backgrounds / J. Ma, G. Zhang, A. Xin, et al. // Acta Agronomica Sinica. 2015. Vol. 41. No. 12. P. 1791–1801. doi: 10.3724/SP.J.1006.2015.01791.
- Distribution research of blast resistance genes Pita, Pib, Pi9 and Pikm in blast-resistance rice resources / X. Dai, Y. Yan, L. Zhou, et al. // Life Science Research. 2012. Vol. 16. No. 4. P. 340–356. doi: 10.16605/j.cnki.1007-7847.2012.04.009.
- Идентификация генов устойчивости к пирикуляриозу риса Pi-1, Pi-2, Pi-33, Pi-40, Pi-ta, Pi-b / О. В. Шумская, Н. Н. Вожжова, О. С. Жогалева, и др. // Зерновое хозяйство России. 2023. Т. 15. № 5. С. 30–38. doi: 10.31367/2079-8725-2023-88-5-30-38.
- Identification of rice blast resistance genes using international monogenic differentials / J. C. Wang, Y. Jia, J. W. Wen, et al. // Crop Protection. 2013. Vol. 45. P. 109–116. doi: 10.1016/j.cropro.1012.11.020.
- Blast resistance R genes pyrtamiding in temperate japonica rice / G. Orasen, R. Greco, E. Puja, et al. // Euphytica. 2020. Vol. 214. Article 40. URL: https://link.springer.com/article/10.1007/s10681-020-2575-2 (дата обращения: 22.01.2021). doi: 10.1007/s10681-020-2575-2.
- Genetic improvement for blast resistance in high-yielding cold-tolerant rice (Oryza sativa L.) cultivar Himalaya 741 by marker-assisted backcross breeding / R. Rathour, R. Kumar, K. Thakur, et al. // 3 Biotech. 2022. Vol. 12. Article 165. URL: https://link.springer.com/article/10.1007/s13205-022-03244-w (дата обращения: 25.05.2023). doi: 10.1007/s13205-022-03244-w.
- Илюшко М. В., Ромашова М. В., Гученко С. С. Оценка частоты внутрикаллусной изменчивости андрогенных удвоенных гаплоидов риса (Oryza sativa L.) по генам устойчивости к пирикуляриозу // Сельскохозяйственная биология. 2023. Т. 58. № 3. С. 554–566. doi: 10.15389/agrobiology.2023.3.554rus.
- Sarao N. K., Gosal S. S. In vitro androgenesis accelerated breeding in rice // Biotechnology of crop improvement. Switzerland: Springer, Cham. Springer International Publishing AG, 2018. Vol. 1. P. 407–435. doi: 10.1007/978-3-319-78283-6.
- Strategies and prospects of haploid induction in rice (Oryza sativa) / M. Kyum, H. Kaur, A. Kamboj, et al. // Plant Breeding. 2021. Vol. 141(2). URL: https://onlinelibrary.wiley.com/doi/10.1111/pbr.12971 (дата обращения: 11.12.2021). doi: 10.1111/pbr.12971.
- Exploring factors affecting anther culture in rice (Oryza sativa L.) / S. K. Tripathy, D. Swain, P. M. Mohapatra, et al. // Journal of Applied Biology and Biotechnology. 2019. Vol. 7 (02). P. 87–92. doi: 10.7324/JABB.2019.70216.
- Creation of rice doubled haploids resistant to prolonged flooding using anther culture / P. Kostylev, N. Kalinina, N. Vozhzhova, et al. // Plants. 2023. Vol. 3681. Article 3681. URL: https://www.mdpi.com/2223-7747/12/21/3681 (дата обращения: 13.10.2024). doi: 10.3390/plants12213681.
- Получение дигаплоидых линий для селекции глютинозного риса / И. А. Сартбаева, Б. Н. Усенбеков, А. Б. Рысбекова и др. // Биотехнология. 2018. Т. 34. № 2. С. 26–36. doi: 10.21519/0234-2758-2018-34-2-26-36.
- Aljanabi S. M., Martinez I. Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques // Nucleic Acid Research. 1997. Vol. 25. No. 22. P. 4692–4693. doi: 10.1093/nar/25.22.4692.
- Ilyushko M. V. Effect of growing conditions of rice donor plants on anther culture in vitro // Journal of Agricultural Science and Technology A. 2015. Vol. 5. P. 686–694. doi: 10.17265/2161-6256/2015.08.007.
- Improvement of anther culture to integrate doubled haploid technology in temperate rice (Oryza sativa L.) breeding / C. Lantos, M. Jancso, A. Szekely, et al. // Plants. 2022. Vol. 11. Article 3446. URL: https://www.mdpi.com/2223-7747/11/24/3446 (дата обращения: 02.02.2023). doi: 10.3390/plants11243446.
- Харитонов Е. М., Гончарова Ю. К. Стерильность при межподвидовой гибридизации риса Oryza sativa L. в связи с поиском генов широкой совместимости и отнесением образцов к подвидам indica и japonica // Сельскохозяйственная биология. 2013. № 5. С. 61–68. doi: 10.15389/agrobiology.2013.5.61rus.
- D’Hooghvorst I., Ferreres I., Nogues S. Anther culture and chromosome doubling in Mediterranean japonica rice // Jose M. Segui-Simarro (ed.). Doubled haploid technology. Volume 1: General topics, Alliaceae, Cereals, Methods in molecular biology, 2287. Springer Science+Business Media, LLC, part of Springer Nature. 2021. P. 333–341. doi: 10.1007/978-1-0716-1315-3_19.
- Ляховкин А. Г. Рис. Мировое производство и генофонд. СПб: Профи-Информ, 2005. 288 с.
- Detection of a novel locus involved in non-seed-shattering behavior of Japonica rice cultivar, Oryza sativa «Nipponbare» / Y. Tsujimura, S. Sugiyama, K. Otsuka, et al. // Theoretical and Applied Genetics. 2019. Vol. 132. P. 2615–2623. doi: 10.1007/s00122-019-03376-3.
- Wu H., He Q., Wang Q. Advances in rice seed shattering // International Journal of Molecular Sciences. 2023. Vol. 24. Article 8889. URL: https://www.mdpi.com/1422–0067/24/10/8889 (дата обращения: 02.02.2025). doi: 10.3390/ijms24108889.
Supplementary files
