Отличия в реорганизации цитоскелета в клетках корней табака у исходного сорта и трансгенной линии с гиперэкспрессией FeSOD1 при засолении

Обложка

Цитировать

Полный текст

Аннотация

Цель исследования - изучить состояние и реакцию элементов цитоскелета (микротрубочек и актиновых филаментов) в клетках корней табака сорта Самсун и его трансгенной линии, экспрессирующий ген FeSOD1 из Arabidopsis thaliana с лидерной последовательностью rbcS гороха для локализации продукта гена в хлоропластах, кодирующих Fe зависимую супероксиддисмутазу, конститутивно индуцирующую внутриклеточный окислительный стресс, путем увеличения пула Н2О2 на продолжительное действие умеренных концентраций NaCl и Na2SO4. Основной гипотезой было выявление положительного защитного действия контролируемого постоянного окислительного стресса на стабильность наиболее чувствительной системы, обеспечивающей рост делением и рост растяжением (тубулиновый цитоскелет), и эффективный внутриклеточный транспорт и стабильность структур (система актиновых филаментов). Электронномикроскопическая и иммуноцитологическая локализация микротрубочкового цитоскелета и актиновых филаментов с использованием антител к тубулину клон DM1α и актину клон 10-В3, выявленных при обработке вторыми антителами конъюгированными с Alexa-488, позволила установить признаки реорганизации и разборки сети актиновых филаментов при действии NaCl и Na2SO4, как у контрольных, так и у трансгенных растений. При этом у трансгенных растений отличия наблюдали и без воздействия, что свидетельствует об эффективности используемого метода для стимуляции защитного ответа. Состояние системы тубулинового цитоскелета и актиновых филаментов может быть индикатором устойчивости трансгенных по FeSOD1 растений к засолению. Установлена связь реорганизации цитоскелета с вакуолизацией особенно при Na2SO4.

Об авторах

Е. Н Баранова

Всероссийский научно-исследовательский институт сельскохозяйственной биотехнологии;Российский государственный аграрный университет - МСХА им. К. А. Тимирязева;Главный ботанический сад им. Н. В. Цицина Российской академии наук

127434, Москва, ул. Тимирязевская, 42;127434, Москва, ул. Тимирязевская, 49;127276, Москва, ул. Ботаническая, 4

И. А Чабан

Всероссийский научно-исследовательский институт сельскохозяйственной биотехнологии

127434, Москва, ул. Тимирязевская, 42

Е. М Лазарева

Всероссийский научно-исследовательский институт сельскохозяйственной биотехнологии;Московский государственный университет имени М. В. Ломоносова

Email: greenpro2007@rambler.ru
127434, Москва, ул. Тимирязевская, 42;119234, Москва, Ленинские Горы 1, стр. 12

Н. В Кононенко

Всероссийский научно-исследовательский институт сельскохозяйственной биотехнологии

127434, Москва, ул. Тимирязевская, 42

Л. Р Богоутдинова

Всероссийский научно-исследовательский институт сельскохозяйственной биотехнологии

127434, Москва, ул. Тимирязевская, 42

Л. В Куренина

Всероссийский научно-исследовательский институт сельскохозяйственной биотехнологии

127434, Москва, ул. Тимирязевская, 42

А. А Гулевич

Всероссийский научно-исследовательский институт сельскохозяйственной биотехнологии

127434, Москва, ул. Тимирязевская, 42

П. Н Харченко

Всероссийский научно-исследовательский институт сельскохозяйственной биотехнологии

127434, Москва, ул. Тимирязевская, 42

Е. А Смирнова

Всероссийский научно-исследовательский институт сельскохозяйственной биотехнологии;Московский государственный университет имени М. В. Ломоносова

127434, Москва, ул. Тимирязевская, 42;119234, Москва, Ленинские Горы 1, стр. 12

Список литературы

  1. Nick P. Microtubules, signaling, and biotic stress // The Plant Journal. 2013. No. 75. P. 309-323. doi: 10.1111/tpj.12102.
  2. Ma X., Liu M. The microtubule cytoskeleton acts as a sensor for stress response signaling in plants // Molecular Biology Reports. 2019. No. 46. P. 5603-5608. doi: 10.1007/s11033-019-04872-x.
  3. Baxter A., Mittler R., Suzuku N. ROS as key players in plant stress signaling // J Exp Bot. 2014. Vol. 65. No. 5. P. 1229-2014. doi: 10.1093/jxb/ert375.
  4. Mhamdi A., Van Breusegem F. Reactive oxygen species in plant development // Development. 2018. Vol. 145. No. 5. Article dev164376. URL: https://journals.biologists.com/dev/article/145/15/dev164376/48468/Reactive- oxygen-species-in-plant- development (дата обращения 25.08.2023). doi: 10.1242/dev.164376.
  5. ROS-mediated abiotic stress- induced programmed cell death in plants / V. Petrov, J. Hille, B. Mueller- Roeber, et al. // Frontiers in Plant Science. 2015. Vol. 6. No. 69. URL: https://www.frontiersin.org/articles/10.3389/fpls.2015.00069/full (дата обращения 25.08.2023). doi: 10.3389/fpls.2015.00069.
  6. Pilon M., Ravet K., Tapken W. The biogenesis and physiological function of chloroplast superoxide dismutases // Biochimica et Biophysica Acta. 2010. Vol. 1807. No. 8. P. 989-998. doi: 10.1016/j.bbabio.2010.11.002.
  7. Ascorbate peroxidase and catalase activities and their genetic regulation in plants subjected to drought and salinity stresses / A. Sofo, A. Scope, M. Nuzzaki, et al. // Int J Nol Sci. 2015. No. 16. P. 13561-13578. doi: 10.3390/ijms160613561.
  8. Activity of the photosynthetic apparatus and antioxidant enzymes in leaves of transgenic Solanum lycopersicum and Nicotiana tabacum plants, with FeSOD1 gene / E. N. Baranova, E. K. Serenko, T. I. Balachina, et al. // Russian Agricultural Science. 2010. Vol. 36. No. 4. P. 242-249. doi: 10.3103/S1068367410040075.
  9. Formation of atypical tubulin structures in plant cells as a nonspecific response to abiotic stress / E. N. Baranova, N. K. Christov, L. V. Kurenina, et al. // Bulgarian Journal of Agricultural Science. 2016. Vol. 22. No. 6. P. 987-992. URL: https://www.agrojournal.org/22/06-17.pdf (дата обращения 25.08.2023).
  10. Root cells structural changes induced by salt stress are mitigated in FeSOD transgenic tomato plants / L. R. Bogoutdinova, E. M. Lazareva, I. A. Chaban, et al. // Biology. 2020. Vol. 9. No. 9. Article 297. URL: https://www.mdpi.com/2079-7737/9/9/297 (дата обращения 25.08.2023). doi: 10.3390/biology9090297
  11. Time and cell-cycle dependent formation of heterogeneous tubulin arrays induced by colchicine in Triticum aestivum root meristem / E. M. Lazareva, V. Y. Polyakov, Y. S. Chentsov, et al. // Cell Biol Intern. 2003. Vol. 27. No. 8. P. 633-646. doi: 10.1016/S1065-6995(03)00120-3.
  12. Disturbance of reactive oxygen species homeostasis induces atypical tubulin polymer formation and affects mitosis in root-tip cells of Triticum turgidum and Arabidopsis thaliana / P. Livanos, B. Galatis, H. Quader, et al. // Cytoskeleton. 2012. No. 69. P. 1-21. URL: https://onlinelibrary.wiley.com/doi/10.1002/cm.20538 (дата обращения 25.08.2023). doi: 10.1002/cm.20538.
  13. Livanos P., Galatis B., Aposolakos P. The interplay between ROS and tubulin cytoskeleton in plants // Plant Signaling Behav. 2014. No. 9. Article e28069 Landes Bioscience. URL: https://www.tandfonline.com/doi/full/10.4161/psb.28069 (дата обращения 25.08.2023). doi: 10.4161/psb.28069.
  14. Bennett M. D., Smith J. B. Colchicine- induced paracrystals in the tapetum of wheat anthers // J Cell Sci. 1979. No. 38. P. 23-32. doi: 10.1242/jcs.38.1.23.
  15. Masurovsky E. B., Horwitz S. B. Ultrastructural effects of colchicne, vinblastibe and taxol in drug-sensitive and multidrug- resistant J774.2 cells // Protoplasma. 1989. No. 148. P. 138-149. doi: 10.1007/BF02079333.
  16. Wang C., Li J., Yuan M. Salt tolerance requires cortical microtubule reorganization in Arabidopsis // Plant Cell Physiol. 2007. No. 48. P. 1534-1547. doi: 10.1093/pcp/pcm123.
  17. The microfilament cytoskeleton plays a vital role in salt and osmotic stress tolerance in Arabidopsis / C. Wang, L. Zhang, M. Yuan, et al. // Plant Biology. 2009. Vol. 12. No. 1. P. 70-78. doi: 10.1111/j.1438-8677.2009.00201.x.
  18. Disrupted actin dynamics trigger an increment in the reactive oxygen species levels in the Arabidopsis root under salt stress / S. G. Liu, D. Z. Zhu, G. H. Chen, et al. // Plant Cell Rep. 2012. No. 31. P. 1219-1226. doi: 10.1007/s00299-012-1242-z.
  19. Lipid signaling requires ROS production to elicit actin cytoskeleton remodelling during plant innate immunity / L. Cao, W. Wang, W. Zhang, et al. // Int J Mol Sci. 2022. No. 23. Article 2447. URL: https://www.mdpi.com/1422-0067/23/5/2447 (дата обращения 25.08.2023). doi: 10.3390/ijms23052447.
  20. Actin depolymerization is able to increase plant resistance against pathogens via activation of salicylic acid signalling pathway / H. Leontovycova, T. Kalachova, L. Trda, et al. //Scientific Reports. 2019. No. 9. Article 10397. URL: https://www.nature.com/articles/s41598-019-46465-5 (дата обращения 25.08.2023). doi: 10.1038/s41598-019-46465-5.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2023