INVESTMENT RISKS MODELLING IN AGRO-INDUSTRIAL COMPLEX


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The agricultural industry has traditionally been considered high-risk by lenders and investors because of risk factors such as adverse weather conditions. However, recent research shows that agricultural lending does not differ from lending to other businesses in terms of default risk, using examples from specific countries and lending institutions. In order to refute or confirm these conclusions in the context of the Russian agribusiness, a model was developed to estimate the probability of default for small and medium-sized agricultural enterprises using annual financial statements data for 2015-2019. The model based on logistic regression showed the result of the AUC ROC metric comparable to its values for the models used in practice when assessing credit risk. The obtained result served as a basis for the adoption of the hypothesis of the comparability of default risk between agricultural and other types of business in relation to Russia. The suggestions for further research into the problem of assessing the credit risk of agricultural enterprises were also formulated.

Texto integral

Acesso é fechado

Sobre autores

Artemij Shadrin

Financial University under the Government of the Russian Federation

Email: shadrin.art@gmail.com
Moscow, Russian Federation

Elena Chirkova

Financial University under the Government of the Russian Federation

Email: elen.chirkova@mail.ru
Moscow, Russian Federation

Bibliografia

  1. «Агроэксперт», 2020 [URL: https://www.rshb.ru/download-file/421783/Agroekspert_2020_1.pdf]
  2. «Итоги всероссийской сельскохозяйственной переписи 2006 года», ИИЦ «Статистика России», 2008;
  3. «Итоги всероссийской сельскохозяйственной переписи 2016 года», ИИЦ «Статистика России», 2018
  4. «Обзор рынка сельского хозяйства - 2019», Deloitte, 2019 [URL: https://www2.deloitte.com/ru/ru/pages/consumer-business/articles/snapshot-of-the-russian-agroindustry.html]
  5. «СПАРК-Интерфакс», https://www.spark-interfax.ru/
  6. Федеральная служба государственной статистики «Росстат», Валовой внутренний продукт и произведенный ВВП по разделам ОКВЭД 2, годовые данные за 2011-2020 гг. в приведенных ценах 2016 года [URL: https://rosstat.gov.ru/accounts]
  7. «A Future That Works: Automation, Employment, and Productivity», McKinsey Global Institute, 2017 [https://www.mckinsey.com /~/media/mckinsey/featured%20insights/Digital%20Disruption/Harnessing%20automation%20for%20a%20future%20that%20works/MGI-A-future-that-works-Executive-summary.ashx]
  8. «AEROSPACE-AGRO» [URL 1: https://www.instagram.com/ aerospace.agro/?hl=en] [URL 2: https://aerospace-agro.com]
  9. «Agriculture Drones Market Report», Reports and Data, 2020 [URL: https://www.reportsanddata.com/report-detail/agriculture-drone-market]
  10. «Benchmarking regression algorithms for loss given default modeling», G. Loterman, I. Brown, D. Martens, C. Mues, B. Baesens, 2012
  11. «Can agricultural credit scoring for microfinance institutions be implemented and improved by weather data?», Römer, Ulf; Mußhoff, Oliver, 2017
  12. «Credit Risk Modelling», Bart Baesens, 2015 [URL: https://youtu.be /1vF3dbcr1c8]
  13. «GUSS» - Global Unmanned Spray System [URL: https://gussag.com]
  14. «MARS Crop Yield Forecasting System» [URL: https://marswiki.jrc.ec.europa.eu/agri4castwiki/index.php/Welcome_to_WikiMCYFS]
  15. «Performance of the MARS-crop yield forecasting system for the European Union: Assessing accuracy, in-season, and year-to-year improvements from 1993 to 2015», M. van der Velde, L. Nisini, 2019
  16. «Where Is the Risk? Is Agricultural Banking Really More Difficult than Other Sectors?», Klaus Maurer, 2014

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML