Thermal field of the southern taiga landscape of the Russian plain

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The technology of allocation of order parameters (invariants) of the spatial structure of the thermal field of the southern taiga landscape (Central Forest Nature Reserve) obtained on the basis of the analysis of the time series of measurements in the long-wave channel of Landsat satellites from 1986 to 2017 and reflecting its stationary state is considered. It is shown that the heat flux is measured by the satellite not directly from the forest crowns, but from the ground layer of the atmosphere, the state of which is determined by the parameters of the landscape. It is found that the invariant component of the spatiotemporal variation of the thermal field is displayed by two order parameters: the first mainly reflects the temperature of winter months, the second – of summer. The contribution of relief and vegetation to the determination of invariants and the autochthonous components of the thermal field determined by the transition zones between the landscape elements contrasting in thermal radiation are revealed. It is shown that the thermal field measured by the satellite reflects the heat flux from the ground layer of the atmosphere, which is in direct interaction with the landscape cover.

Full Text

Restricted Access

About the authors

Yu. G. Puzachenko

Institute of Ecology and Evolution, Russian Academy of Sciences

Author for correspondence.
Email: baybaranastasia@yandex.ru
Russian Federation, 33, Leninsky prospekt, Moscow, 119071

A. S. Baibar

Lomonosov Moscow State University

Email: baybaranastasia@yandex.ru
Russian Federation, 1, Leninskie gory, Moscow, 119991

A. V. Varlagin

Institute of Ecology and Evolution, Russian Academy of Sciences

Email: baybaranastasia@yandex.ru
Russian Federation, 33, Leninsky prospekt, Moscow, 119071

R. B. Sandlersky

Institute of Ecology and Evolution, Russian Academy of Sciences

Email: baybaranastasia@yandex.ru
Russian Federation, 33, Leninsky prospekt, Moscow, 119071

A. N. Krenke

Institute of Geography, Russian Academy of Sciences

Email: baybaranastasia@yandex.ru
Russian Federation, 29, Staromonetny, Moscow, 119017

References

  1. Bol'shaya sovetskaya entsiklopediya [The Great Soviet Encyclopedia]. Moscow: Sovetskaya Entsiklopediya Publ., 1969–1978. 19774 p.
  2. Kabanov M. V. Some regularities of climatic and ecosystem changes in Siberia. Zh. Sib. Fed. Univ., Biol. 2008, vol. 1, no. 4, pp. 312–322.
  3. Kazakov A. A. Remote geothermal sensing of Western Siberia bogs (the case of Tarmany marsh massif). Tyumen St. Univ. Herald, 2013, no. 4, pp. 161–167.
  4. Puzachenko Yu.G. Invariants of the dynamic geosystem. Izv. Akad. Nauk, Ser. Geogr., 2010, no. 5, pp. 6–16. (In Russ.).
  5. Puzachenko Yu.G. Matematicheskie metody v ekologicheskikh i geograficheskikh issledovaniyakh [Mathematical Methods in Ecological and Geographical Research]. Moscow: ACADEMIA Publ., 2004. 416 p.
  6. Puzachenko Yu.G. Organization of landscape. In Voprosy geografii. Sb. 138: Gorizonty landshaftovedeniya [Problems of Geography. Vol. 137: Landscape Science Horizons]. Moscow: Kodeks Publ., 2014, pp. 35–65. (In Russ.).
  7. Puzachenko Yu.G., Kozlov D.N. Geomorphological history of the region. Integrated research in the Central-Forest State Nature Biosphere Reserve: their past, present and future. In Tr. Tsentral'no-Lesnogo zapovednika [Proceedings of the Central Forest Reserve]. Tula, 2007, vol. 4, pp. 125–159. (In Russ.).
  8. Sochava V.B. Uchenie o geosistemakh [The Doctrine of Geosystems]. Novosibirsk: Nauka Publ., 1975. 39 p.
  9. Haken H. Principles of Brain Functioning: A Synergetic Approach to Brain Activity. Berlin, New York: Springer, 2001. 351 p.
  10. Haken H. Synergetics. An Introduction. Berlin: Springer, 1980. 450 p.
  11. Tsentral'no-Lesnoi gosudarstvennyi prirodnyi biosfernyi zapovednik. Populyarnyi ocherk [Central-Forest State Nature Biosphere Reserve. A Popular Essay]. Moscow: Delovoi Mir Publ., 2007. 80 p.
  12. Chen F., Yang S., Yin K., Chan P. Challenges to quantitative applications of Landsat observations for the urban thermal environment. J. Environ. Sci.–China, 2017, no. 59, pp. 80–88.
  13. Son N.T., Thanh B.X. Decadal assessment of urban sprawl and its effects on local temperature using Landsat data in Cantho city, Vietnam. Sustainable Cities and Society, 2018, no. 36, pp. 81–91.
  14. Fernandez-Manso A., Quintano C., Roberts D. Burn severity influence on post-fire vegetation cover resilience from Landsat MESMA fraction images time series in Mediterranean forest ecosystems. Remote Sens. Environ., 2016, no. 184, pp. 112–123.
  15. Hais M., Kuсhera T. The influence of topography on the forest surface temperature retrieved from Landsat TM, ETM+ and ASTER thermal channels. ISPRS J.Photogramm., 2018, no. 64, pp. 585–591.
  16. Huang C.Y., Anderegg W.R.L. Vegetation, land surface brightness, and temperature dynamics after aspen forest die off. J. Geophys. Res. Biogeosci., 2014, vol. 119, no. 7, pp. 1297–1308.
  17. Jorgensen S.E., Svirezhev Y.M. Towards a Thermodynamic Theory for Ecological Systems. Elsevier, 2004. 380 p.
  18. Kang J.M., Yun H.C., Park J.K. Analysis of temperatures distribution of forest type class using Landsat imagery. ASPRS Annual Conference, Milwaukee, 2011, pp. 8–16.
  19. Puzachenko Y., Sandlersky R. , Sankovskii A. . Methods of Evaluating Thermodynamic Properties of Landscape Cover Using Multispectral Reflected Radiation Measurements by the Landsat Satellite. Entropy, 2013, no. 15(9), pp. 3970–3982.
  20. Puzachenko Y.G., Sandlersky R.B., Svirejeva-Hopkins A. Estimation of thermodynamic parameters of the biosphere, based on remote sensing. Ecol. Modell., 2011, no. 222, pp. 2913–2923.
  21. Ray T.W. A FAQ on Vegetation in Remote Sensing. California Institute of Technology, 1994. Available at: http://www.remote-sensing.info/wp-content/uploads/2012/07/A_FAQ_on_Vegetation_in_Remote_Sensing.pdf (accessed 13.01.2019).
  22. Vlassova L., Perez-Cabello F., Nieto H., Martín P., Riano D. Assessment of Methods for Land Surface Temperature Retrieval from Landsat-5 TM Images Applicable to Multiscale Tree-Grass Ecosystem Modeling. Remote Sens., 2014, no. 6, pp. 4345–4368.
  23. Wood J. The Geomorphological Characterization of Digital Elevation Models. Leicester: University of Leicester, 1996. 466 p.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The ratio of temperature, measured with Landsat, to temperature and heat flux, measured on a tower in the spruce forest.

Download (83KB)
3. Fig. 2. Estimation of the dimension of the temperature variation space according to the scree method. 1 - described variation in percent, 2 - random process model.

Download (68KB)
4. Fig. 3. The temporal dynamics of standardized regression coefficients for the first two components.

Download (112KB)
5. Fig. 4. Spatial variation of the first two invariants, reflecting the temperature field in winter (1) and summer (2), reduced to the temperature of the coldest and warmest measurement terms.

Download (191KB)
6. Fig. 5. Deviations of two invariants from the regression model.

Download (235KB)
7. Fig. 6. Hierarchical levels of relief organization: (a) - territory relief; (b) - 3810/80 m; (c) - 1050/50 m; (g) - 450/30 m; (e) - 270/15 m; (e) - 150/5 m.

Download (178KB)
8. Fig. 7. Relief effect (winter) R2 = 0.22: (a) - the thermal field described by the relief; (b) - thermal field not described by relief.

Download (147KB)
9. Fig. 8. Influence of the relief (summer) R2 = 0.268: a is the thermal field described by the relief; b - thermal field not described by the relief.

Download (154KB)
10. Fig. 9. The temperature field described by the relief, represented by two axes of discriminant analysis.

Download (121KB)
11. Fig. 10. The ratio of the properties of vegetation and temperature in winter.

Download (93KB)
12. Fig. 11. The ratio of the properties of vegetation and temperature in summer.

Download (81KB)
13. Fig. 12. Classification of thermal fields without taking into account the effect of relief. High temperatures correspond to light tone, low temperatures correspond to dark tone.

Download (181KB)
14. Fig. 13. The values of the invariants converted into the temperature of the warmest and coldest observation periods (in terms of winter temperatures).

Download (101KB)
15. Fig. 14. Six types of invariants that highlight the boundaries of bogs and agricultural land.

Download (126KB)
16. Fig.15. The values of the invariants converted into temperatures of the warmest and coldest observation periods, ordered by winter temperatures.

Download (71KB)

Copyright (c) 2019 Russian academy of sciences