Assessment of the role of the Pacific Ocean in present climate changes

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Hydrothermodynamic processes in the atmosphere–ocean system played in favour of global warming slowdown in 1998–2014 were studied in this work. On the base of remote sensing and reanalysis data, close relationships between total global and regional column water vapour, terrestrial wind speed and temperature anomalies of upper layer water in tropical Pacific region were revealed. Increase of the wind speed in tropical Pacific has been observed since 1980 (linear trend ratio is –0.017 m · s–1/year). The most significant wind speed increase was in 1992–2013 (–0.025 m · s–1/year). During this period, the following phenomena were also observed: water temperature rise in upper layers of central and east equatorial Pacific regions by 0.024 K/year and accumulation of heat in the deeper layers of western Pacific north of the equator. These tendencies contributed to decrease in evaporation from the surface of the Pacific, which exerts considerable influence on the global mean water vapour content in the atmosphere with nearly 1-year lag (correlation coefficient is 0.88). Thus, average total column water vapour had been decreasing with average rate 0.12 mm/year until 2014. Atmospheric radiation transfer model calculations showed that decrease of water vapour content in atmospheric during 2001–2014 reduced the incoming part of Earth’s surface radiation balance by 0.93 W/m², which exceeds CO2-related increase in greenhouse warming by 11 times. Such behaviour of greenhouse gases concentrations could be the reason of decrease of winter temperature in Northern hemisphere. Summer temperatures continued to grow due to decrease in cloud optical depth in 35°N–70°N latitude zone and following radiation heating of the land surface.

全文:

受限制的访问

作者简介

V. Loginov

Institute for Nature Management, National Academy of Sciences of Belarus

编辑信件的主要联系方式.
Email: lysenkorfe@gmail.com
白俄罗斯, Minsk

S. Lysenko

Institute for Nature Management, National Academy of Sciences of Belarus

Email: lysenkorfe@gmail.com
白俄罗斯, Minsk

参考

  1. Byshev V.I., Neiman V.G., Romanov Yu.A., Serykh I.V. On the spatial heterogeneity of some parameters of the current climate global variability. Dokl. Akad. Nauk, 2009, vol. 426, no. 4, pp. 543–548. (In Russ.).
  2. Byshev V.I., Neiman V.G., Romanov Yu.A., Serykh I.V. El Niño as a consequence of global atmospheric oscillation in the dynamics of the Earth’s climate system. Dokl. Akad. Nauk, 2012, vol. 446, no. 4, pp. 89–94. (In Russ.).
  3. Fedorov V.M. Trends in the temperature of the surface of the oceans and their causes. Slozhnye Sistemy, 2015, vol. 2, no. 5, pp. 45–56. (In Russ.).
  4. Fedorov V.M. Insolyatsiya Zemli i sovremennye izmeneniya klimata [Earth Insolation and Current Climate Change]. Moscow: Fizmatlit Publ., 2018. 232 p.
  5. Baldridge A.M., Hook S.J., Grove C.I., Rivera G. The ASTER Spectral Library Version 2.0. Remote Sens. Environ., 2009, vol. 113, pp. 711–715.
  6. Byshev V.I., Neiman V.G., Anisimov M.V., Gusev A.V., Serykh I.V., Sidorova A.N., Figurkin A.L., Anisimov I.M. Multi-decadal oscillations of the ocean active upper-layer heat content. Pure Appl. Geophys., 2017, vol. 174, no. 7, pp. 2863–2878.
  7. Camp C.D., Tung K.-K. Surface warming by the solar cycle as revealed by the composite mean difference projection. Geophys. Res. Lett., 2007, vol. 34, no. L14703.
  8. Chen X., Tung K.-K. Varying planetary heat sink led to global-warming slowdown and acceleration. Science, 2014, vol. 345, no. 6199, pp. 897–903.
  9. Climatic Research Unit Data. Available at: http://www.cru.uea.ac.uk/cru/data/temperature/ (accessed 12.03.2019).
  10. Cronin T.W. On the choice of average solar zenith angle. J. Atmos. Sci., 2014, vol. 71, no. 8, pp. 2994–3003.
  11. Dai A., Fyfe J.C., Xie S.-P., Dai X. Decadal modulation of global surface temperature by internal climate variability. Nat. Clim. Chang., 2015, vol. 5, no. 6, pp. 555–559.
  12. Drijfhout S.S., Blaker A.T., Josey S.A., Nurser A.J.G., Sinha B., Balmaseda M. A. Surface warming hiatus caused by increased heat uptake across multiple ocean basins. Geophys. Res. Lett., 2014, vol. 41, no. 22, pp. 7868–7874.
  13. England M.H., McGregor S., Spence P., Meehl G.A., Timmermann A., Cai W., Gupta A.S., McPhaden M.J., Purich A., Santoso A. Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat. Clim. Chang., 2014, vol. 4, pp. 222–227.
  14. Hansen J., Sato M., Kharecha P., von Schuckmann K. Earth’s energy imbalance and implications. Atmos. Chem. Phys., 2011, vol. 11, no. 24, pp. 13421–13449.
  15. Hu S., Fedorov A.V. The extreme El Niño of 2015–2016 and the end of global warming hiatus. Geophys. Res. Lett., 2017, vol. 44, no. 8, pp. 3816–3824.
  16. Kebiao M., Jingming C., Zhaoliang L., Ying M., Yang S., Xuelan T., Kaixian Y. Global water vapor content decreases from 2003 to 2012: An analysis based on MODIS data. Chin. Geogr. Sci., 2017, vol. 27, no. 1, pp. 1–7.
  17. Kosaka Y., Xie S.-P. Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 2013, vol. 501, no. 7467, pp. 403–407.
  18. Ridley D.A., Solomon S., Barnes J.E., Burlakov V.D., Deshler T., Dolgii S.I., Herber A.B., Nagai T., Neely III R.R., Nevzorov A.V., Ritter C., Sakai T., Santer B.D., Sato M., Schmidt A., Uchino O., Vernier J.P. Total volcanic stratospheric aerosol optical depths and implications for global climate change. Geophys. Res. Lett., 2014, vol. 41, no. 22, pp. 7763–7769.
  19. Risbey J.S., Lewandowsky S., Langlais C., Monselesan D.P., O’Kane T.J., Oreskes N. Well-estimated global surface warming in climate projections selected for ENSO. Nat. Clim. Chang., 2014, vol. 4, no. 9, pp. 835–840.
  20. Santer B.D., Bonfils C., Painter J.F., Zelinka M.D., Mears C., Solomon S., Schmidt G.A., Fyfe J.C., Cole J.N.S., Nazarenko L., Taylor K.E., Wentz F.J. Volcanic contribution to decadal changes in tropospheric temperature. Nat. Geosci., 2014, vol. 7, pp. 185–189.
  21. Scott C.E., Arnold S.R., Monks S.A., Asmi A., Paasonen P., Spracklen D.V. Substantial large-scale feedbacks between natural aerosols and climate. Nat. Geosci., 2018, vol. 11, pp. 44–48.
  22. Steinman B.A., Mann M.E., Miller S.K. Atlantic and Pacific multidecadal oscillations and Northern Hemisphere temperatures. Science, 2015, vol. 347, no. 6225, pp. 988–991.
  23. Tunved P., Stroöm J., Kulmala M., Kerminen V.-M., Dal Maso M., Svenningson B., Lunder C., Hansson H.-C. The natural aerosol over Northern Europe and its relation to anthropogenic emissions—implications of important climate feedbacks. Tellus B: Chem. Phys. Meteorol., 2008,vol. 60, no. 4, pp. 473–484.
  24. VonderHaar T.H., Forsythe J.M., Luo J., Randel D.L., Woo S. Water vapor trends and variability from the global NVAP dataset, paper presented at 16th Symposium on Global Change and Climate Variations. New Orleans, 2008. Available at: https://ams.confex.com/ams/pdfpapers/84927.pdf (accessed 12.03.2019).
  25. Yao S.-L., Huang G., Wu R.-G., Qu X. The global warming hiatus – a natural product of interactions of a secular warming trend and a multi-decadal oscillation. Theor. Appl. Climatol., 2016, vol. 123, no. 1–2, pp. 349–360.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian academy of sciences, 2019