Pattern Recognition in the Tasks of Landform Mapping
- Authors: Kharchenko S.V.1,2
-
Affiliations:
- Moscow State University
- Institute of Geography, Russian Academy of Sciences
- Issue: Vol 87, No 1 (2023)
- Pages: 192-206
- Section: ГЕОИНФОРМАЦИОННЫЕ СИСТЕМЫ И КАРТОГРАФИРОВАНИЕ
- URL: https://journals.eco-vector.com/2587-5566/article/view/660783
- DOI: https://doi.org/10.31857/S2587556623010089
- EDN: https://elibrary.ru/LGMRCF
- ID: 660783
Cite item
Full Text
Abstract
The article aims to show the modern state of pattern recognition techniques for automatic and semi-automatic geomorphological mapping. There is opinion among the geomorphometrists about the expert rules for traditional landform mapping can be quantitated. The general unsolved tasks of automatic landform mapping are: recognition of origin for morphologically similar Earth’s surface forms; criteria development for transfer from morphological to genetic and age landform’s characteristics; preventive choosing the optimal resolution of the remote sensing data; the choosing and rationale of predictor’s weights in statistical modeling procedures. Some cases of the pattern recognition techniques using in geomorphology and landform mapping are given: generalized linear models; classification trees; random forest; artificial neural networks; and computer vision methods. The overall accuracy of the different models according to planar continuous landform recognition (and recognition of lithology types too) is about 50–70% and more. At the same time, specific landform type’s (craters, volcanic cones and others) recognition can reach 90–100%.
About the authors
S. V. Kharchenko
Moscow State University; Institute of Geography, Russian Academy of Sciences
Author for correspondence.
Email: xar4enkkoff@yandex.ru
Russia, Moscow; Russia, Moscow
References
- Гаврилов А.А. О природе явлений геоморфологической конвергенции и гомологии // Вестн. Моск. ун-та. Сер. 5: География. 2016. № 4. С. 3–12.
- Геоморфологическая карта Мурманской области / сост. М.К. Граве, Л.М. Граве / Атлас Мурманской области. М.: ГУГК, 1971. С. 8.
- Крамбейн У., Грейбилл Ф. Статистические модели в геологии. М.: Мир, 1969. 400 с.
- Ласточкин А.Н. Морфодинамический анализ. Ленинград: Недра, 1987. 256 с.
- Лобанов В.В. Еще раз об “элементарной морфологической единице”, ее содержании и методике установления // Геоморфология. 1988. № 4. С. 29–34.
- Лопатин Д.В. О полиморфизме в геоморфологии // Геоморфология. 2007. № 3. С. 22–23.
- Серебрянный Л.Р., Чукленкова И.Н. Густота озер как показатель возраста гляцигенной морфоскульптуры (опыт применения морфометрического анализа в северо-западных районах Русской равнины) // Геоморфология. 1973. № 4. С. 79–85.
- Солоненко В.П. Сейсмогенные деформации и палеосейсмогеологический метод // Сейсмическое районирование Восточной Сибири и его геолого-геофизические основы. Новосибирск: Наука, 1977. С. 5–47.
- Спиридонов А.И. Геоморфологическое картографирование. М.: Недра, 1974. 184 с.
- Тимофеев Д.А. О полиморфизме как общем свойстве земной поверхности // Геоморфология. 2006. № 2. С. 3–6.
- Тимофеев Д.А. Элементарные морфологические единицы как объект геоморфологического анализа // Геоморфология. 1984. № 1. С. 19–29.
- Харченко С.В. К вопросу о применении гармонического анализа при количественной характеристике рельефа // Геоморфология. 2017. № 2. С. 14–24.
- Харченко С.В. Новые задачи морфометрии рельефа и автоматизированные морфологические классификации в геоморфологии // Геоморфология. 2020. № 1. С. 3–21.
- Anders N.S., Seijmonsbergen A.C., Bouten W. Segmentation optimization and stratified object-based analysis for semi-automated geomorphological mapping // Rem. Sens. of Environ. 2011. Vol. 115. № 12. P. 2976–2985. https://doi.org/10.1016/j.rse.2011.05.007
- Atkinson J., Jiskoot H., Massari R., Murray T. Generalized linear modelling in geomorphology // Earth Surface Proc. and Landforms. 1998. № 23. P. 1185–1195. https://doi.org/10.1002/(SICI)1096-9837(199812)23: 13%3C1185::AID-ESP928%3E3.0.CO;2-W
- Ayalew L., Yamagishi H. The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan // Geomorphology. 2005. Vol. 65. № 1–2. P. 15–31. https://doi.org/10.1016/j.geomorph.2004.06.010
- Brandmeier M., Chen Y. Lithological classification using multi-sensor data and convolutional neural networks // Int. Archives of the Photogrammetry, Remote Sens. & Spatial Inform. Sci. 2019. https://doi.org/10.5194/isprs-archives-XLII-2-W16-55-2019
- Breiman L. Random Forests // Machine Learning. 2001. № 45. P. 5–32. https://doi.org/10.1023/A:1010933404324
- Brown D.G., Lusch D.P., Duda K.A. Supervised classification of types of glaciated landscapes using digital elevation data // Geomorphology. 1998. Vol. 21. № 3–4. P. 233–250. https://doi.org/10.1016/S0169-555X(97)00063-9
- Cavazzi S., Corstanje R., Mayr T., Hannam J., Fealy R. Are fine resolution digital elevation models always the best choice in digital soil mapping? // Geoderma. 2013. Vol. 195. P. 111–121. https://doi.org/10.1016/j.geoderma.2012.11.020
- Clark C.D., Hughes A.L., Greenwood S.L., Spagnolo M., Ng F.S. Size and shape characteristics of drumlins, derived from a large sample, and associated scaling laws // Quat. Sci. Rev. 2009. Vol. 28. № 7–8. P. 677–692. https://doi.org/10.1016/j.quascirev.2008.08.035
- Deng Y., Wilson J., Sheng J. Effects of variable attribute weights on landform classification // Earth Surface Proc. and Landforms. 2006. № 31. P. 1452–1462. https://doi.org/10.1002/esp.1401
- d’Oleire-Oltmanns S., Eisank C., Drăgut L., Blaschke T. An object-based workflow to extract landforms at multiple scales from two distinct data types // IEEE Geosci. and Rem. Sens. Lett. 2013. Vol. 10. № 4. P. 947–951. https://doi.org/10.1109/LGRS.2013.2254465
- Ermini L., Catani F., Casagli N. Artificial natural networks applied to landslide susceptibility assessment // Geomorphology. 2005. Vol. 66. P. 327–343. https://doi.org/10.1016/j.geomorph.2004.09.025
- Evans I.S. Geomorphometry and landform mapping: What is a landform? // Geomorphology. 2012. Vol. 137. P. 94–106. https://doi.org/10.1016/j.geomorph.2010.09.029
- Florinsky I.V., Eilers R.G., Manning G.R., Fuller L.G. Prediction of soil properties by digital terrain modeling // Environ. Modelling & Software. 2002. № 17 (3). P. 295–311. https://doi.org/10.1016/S1364-8152(01)00067-6
- Florinsky I.V. Digital terrain analysis in soil science and geology. Academic Press, 2016. 506 p.
- Kharchenko S. Automated recognition of the landforms origin for the Kola Peninsula based on morphometric variables / EGU General Assembly 2021 (19–30 April 2021) EGU21-15564. https://doi.org/10.5194/egusphere-egu21-15564
- Lastochkin A.N., Zhirov A.I., Boltramovich S.F. System-morphological approach: Another look at morphology research and geomorphological mapping // Geomorphology. 2018. Vol. 303. P. 486–503. https://doi.org/10.1016/J.GEOMORPH.2017.10.022
- Leverington D., Duguay C. A neural network method to determine the presence or absence of permafrost near Mayo, Yukon Territory, Canada // Permafrost and Periglacial Proc. 1997. № 8. P. 205–215. https://doi.org/10.1002/(SICI)1099-1530(199732)8:23.0.CO;2-5
- Li W., Hsu C.Y. Automated terrain feature identification from remote sensing imagery: a deep learning approach // Int. J. Geographical Inform. Sci. 2020. № 34 (4). P. 637–660. https://doi.org/10.1080/13658816.2018.1542697
- Link A.J. A physic-chemical and textural study of carbonate sedimentation in a lagoonal environment. Evanston, IL: Northwestern Univ., 1964.
- Luoto M., Hjort J. Evaluation of current statistical approaches for predictive geomorphological mapping // Geomorphology. 2005. № 67. P. 299–315. https://doi.org/10.1016/j.geomorph.2004.10.006
- MacMillan R.A., Pettapiece W.W., Nolan S.C., Goddard T.W. A generic procedure for automatically segmenting landforms into landform elements using DEMs, heuristic rules and fuzzy logic // Fuzzy Sets and Systems. 2000. № 113. P. 81–109. https://doi.org/10.1016/S0165-0114(99)00014-7
- MacMillan R.A., Shary P.A. Landforms and landform elements in geomorphometry // Geomorphometry: Concepts, Software, Applications. Developments in soil science – 33 / T. Hengl, H.I. Reuter (Eds.). 2009. Vol. 33. P. 227–254. https://doi.org/10.1016/S0166-2481(08)00009-3
- MacMillan R.A., Pettapiece W.W. Alberta Landforms: Quantitative morphometric descriptions and classification of typical Alberta landforms / Technical Bul. № 2000-2E. Research Branch, Agriculture and Agri-Food Canada, Semiarid Prairie. Agricultural Research Centre, Swift Current, SK, 2000. 118 p.
- Marmion M., Hjort J., Thuiller W., Luoto M. A comparison of predictive methods in modelling the distribution of periglacial landforms in Finnish Lapland // Earth Surface Proc. and Landforms. 2008. № 33. P. 2241–2254. https://doi.org/10.1002/esp.1695
- Miska L., Jan H. Evaluation of current statistical approaches for predictive geomorphological mapping // Geomorphology. 2005. Vol. 67. № 3–4. P. 299–315. https://doi.org/10.1016/j.geomorph.2004.10.006
- Pennock D.J., Zebarth B.J., De Jong E. Landform classification and soil distribution in hummocky terrain, Saskatchewan, Canada // Geoderma. 1987. Vol. 40. № 3–4. P. 297–315. https://doi.org/10.1016/0016-7061(87)90040-1
- Rashid I., Romshoo S.A., Hajam J.A., Abdullah T. A semi-automated approach for mapping geomorphology in mountainous terrain, Ferozpora watershed (Kashmir Himalaya) // J. Geological Soc. of India. 2016. Vol. 88. № 2. P. 206–212. https://doi.org/10.1007/s12594-016-0479-5
- Shary P.A., Sharaya L.S., Mitusov A.V. Fundamental quantitative methods of land surface analysis // Geoderma. 2002. Vol. 107. № 1–2. P. 1–32. https://doi.org/10.1016/S0016-7061(01)00136-7
- Smith M.J., Clark C.D. Methods for the visualization of digital elevation models for landform mapping // Earth Surface Proc. and Landforms. 2005. Vol. 30. № 7. P. 885–900. https://doi.org/10.1002/esp.1210
- Sutfin N.A., Shaw J.R., Wohl E.E., Cooper D.J. A geomorphic classification of ephemeral channels in a mountainous, arid region, southwestern Arizona, USA // Geomorphology. 2014. № 221. P. 164–175. https://doi.org/10.1016/j.geomorph.2014.06.005
- Veronesi F., Hurni L. Random Forest with semantic tie points for classifying landforms and creating rigorous shaded relief representations // Geomorphology. 2014. Vol. 224. P. 152–160. https://doi.org/10.1016/j.geomorph.2014.07.020
- Weiss A.D. Topographic positions and landforms analysis (Conference Poster). ESRI Int. User Conference. San Diego, CA July 9–13 2001.
- Zhu Y.M., Lu X.X., Zhou Y. Suspended sediment flux modeling with artificial neural network: An example of the Longchuanjiang River in the Upper Yangtze Catchment, China // Geomorphology. 2007. № 84. P. 111–125. https://doi.org/10.1016/j.geomorph.2006.07.010
Supplementary files
