Assessment of the influence of climatic factors on the state of terrestrial ecosystems in the Northwestern region of Russia

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The article analyzes the change of climatic conditions in the Northwest of Russia, including the characteristics of dangerous hydrometeorological events (cold and heat waves, strong winds, extreme rainfall, snowfall, ice-frost deposits, hail) and slow climatic changes (increase in the number of days with the transition of air temperature through 0°С, coastal abrasion) in connection with their negative impact on terrestrial ecosystems. It was found that the influence of meteorological and climatic factors on terrestrial ecosystems is most pronounced in the northern part of the studied region, especially on the coast of the Barents Sea. Towards the south, the values of all indicators gradually decrease, and their structure changes. In the northern part of the study area (Murmansk and Arkhangelsk oblasts, the Nenets Autonomous Okrug), phenomena associated with strong winds and intensive ice-frost deposition, which contribute to the formation of an ice crust on the Earth’s surface, prevail. As one moves away from the coast, severe frost is observed more often (Komi Republic). In the center and south of the region, heavy rainfall, severe frost, and intense heat are the most frequent, resulting in a high fire hazard. The study carried out the ranking of the subjects of the Northwestern Federal District according to the degree of intensity of this process. Comprehensive assessments of the negative impact of changing climatic conditions on terrestrial ecosystems can be used to make decisions on the development of a strategy for environmental security of the regions of the Russian Federation.

Full Text

Restricted Access

About the authors

M. P. Vasiliev

Scientific Research Centre for Ecological Safety of the Russian Academy of Sciences

Author for correspondence.
Email: mih.vasilev@mail.ru
Russian Federation, St. Petersburg

E. М. Nesterov

Herzen State Pedagogical University of Russia

Email: mih.vasilev@mail.ru
Russian Federation, St. Petersburg

Е. V. Kashirina

Herzen State Pedagogical University of Russia

Email: kashirina@yandex.ru
Russian Federation, St. Petersburg

A. V. Lyubimov

Herzen State Pedagogical University of Russia

Email: mih.vasilev@mail.ru
Russian Federation, St. Petersburg

References

  1. ACIA, 2004. Impacts of a Warming Arctic: Arctic Climate Impact Assessment. ACIA Overview report. Cambridge Univ. Press, 2004.
  2. Ananicheva M.D, Anokhin Yu.A., Asarin A.E. Natural Ecosystems of the Land. Chapter 6. In Metody otsenki posledstvii izmeneniya klimata dlya fizicheskikh i biologicheskikh system [Methods for Assessing the Effects of Climate Change on Physical and Biological Systems]. Semenov S.M., Ed. Moscow: Planeta Publ., 2012, pp. 190–265. (In Russ.).
  3. Arctic Resilience Interim Report 2013. Stockholm: Arctic Council, 2013.
  4. De Groot W.J., Flannigan M.D., Cantin A.S. Climate change impacts on future boreal fire regimes. For. Ecol. Manag., 2013, no. 294, pp. 35–44.
  5. Doklad o klimaticheskikh riskakh na territorii Rossiiskoi Federatsii [Report on Climate Risks in the Territory of the Russian Federation]. Kattsov V.M., Ed. St. Petersburg: Glavn. Geofizich. Observatoria im. Voeikova, 2017. 106 p.
  6. Entsiklopediya klimaticheskikh resursov Rossiiskoi Federatsii [Encyclopedia of Climatic Resources of the Russian Federation]. Kobysheva N.V., Khairullin K.Sh., Ed. St. Petersburg: Hydrometeoizdat, 2005. 319 p.
  7. FAO, 2013. Climate change guidelines for forest managers. FAO Forestry Paper. Rome: FAO, 2013, no. 172. 110 p.
  8. Global Forest Watch, 2019. Available at: http://www.globalforestwatch.org (accessed: 04.12.2020).
  9. Green R.E. Harley M., Spalding M., Zockler C. Impacts of climate change on wildlife. RSBP/UNEP WCMC Publication, 1999.
  10. Informatsionnyi byulleten’ o sostoyanii geologicheskoi sredy pribrezhno-shel’fovykh zon Barentseva, Belogo i Baltiiskogo morei v 2018 g. [Newsletter on the State of the Geological Environment of the Coastal Shelf Zones of the Barents, White and Baltic Seas in 2018]. St. Petersburg: VSEGEI, 2019. 99 p.
  11. IPCC, 2012. Summary for Policymakers. In Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change. Cambridge, New York: CUP.
  12. IPCC, 2014. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, New York: CUP.
  13. Izmeneniya klimata Arktiki: mesto klimaticheskoi nauki v planirovanii adaptatsii [Arctic Climate Change: The Place of Climate Science in Adaptation Planning]. Kattsov V.M., Ed. St. Petersburg: Glavn. Geofizich. Observatoria im. Voeikova, 2017. 104 p.
  14. Kattsov V.M., Khlebnikova E.I., Shkolnik I.M., Rudakova Yu.L. Probabilistic regional climate project in gas a basis for development of adaptation programs in the economy of the Russian Federation. Russ. Meteorol. Hydrol., 2020, vol. 45, no. 5, pp. 330–338. https://doi.org/10.3103/S1068373920050039
  15. Kattsov V.M., Shkolnik I.M., Efimov S.V., Konstantinov A.V., Pavlova V.N., Pavlova T.V., Khlebnikova E.I., Pikaleva A.A., Baidin A.V., Borisenko V.A. Development of a technique for regional climate probabilistic projections over the territory of Russia aimed at building scenarios of climate impacts on economy sectors. Part 1: Task definition and numerical experiments. Trudy GGO, 2016, vol. 583, pp. 7–29. (In Russ.).
  16. Kattsov V.M., Shkolnik I.M., Pavlova V.N., Khlebnikova E.I., Efimov S.V., Konstantinov A.V., Pavlova T.V., Pikaleva A.A., Rudakova Yu. L., Sall I.A., Baidin A.V., Zadvornykh V.A. Development of a technique for regional climate probabilistic projections over the territory of Russia aimed at building scenarios of climate impacts on economy sectors. Part 2: Climate impact projections. Trudy GGO, 2019, vol. 593, pp. 6–52. (In Russ.).
  17. Khlebnikova E.I., Kattsov V.M., Pikaleva A.A., Shkolnik I.M. Assessment of climate change impacts on economic development of the Russian arctic in the 21st century. Russ. Meteorol. Hydrol., 2018, vol. 43, no. 6, pp. 347–356. https://doi.org/10.3103/S1068373918060018
  18. Khlebnikova E.I., Rudakova Yu.L., Shkolnik I.M. Changes in precipitation regime over the territory of Russia: Data of regional climate modeling and observations. Russ. Meteorol. Hydrol., 2019, vol. 44, no. 7, pp. 431–439. https://doi.org/10.3103/S106837391907001X
  19. Koroleva T.S., Konstantinov A.V., Shunkina E.A. Threats and socio-economic impacts of climate change for the forest sector. Trudy S.-Peterb. Nauch.-Issled. Inst. Lesn. Khoz., 2015, no. 3, pp. 55–71. (In Russ.).
  20. Koroleva, Konstantinov A.V., Kushnir E.A., Torzhkov I.O. Results of standardized vulnerability assessment of forestry in russia in the impact of climate variability. Trudy S.-Peterb. Nauch.-Issled. Inst. Lesn. Khoz., 2017, no. 3, pp. 13–22. (In Russ.).
  21. Li F., Lawrence D.M., Bond-Lamberty B. Impact of fire on global land surface air temperature and energy budget for the 20th century due to changes within ecosystems. Environ. Res. Lett., 2017, vol. 12, no. 4, pp. 10–53.
  22. Meteorologicheskii ezhemesyachnik. Vyp. 1–3 [Meteorological Monthly. Vol. 1–3]. Rosgidromet, 2017–2019.
  23. Metodicheskie rekomendatsii po raschetu spetsializirovannykh klimaticheskikh kharakteristik dlya obsluzhivaniya razlichnykh otraslei ekonomiki. Stroitel’stvo. Transport [Methodological Recommendations for the Calculation of Specialized Climatic Characteristics for Servicing Various Sectors of the Economy. Construction. Transport]. St. Petersburg: Glavn. Geofizich. Observatoria im. Voeikova, 2017. 160 p.
  24. Natsional’nyi atlas Rossii. Tom 2. Priroda i ekologiya [The National Atlas of Russia. Vol. 2. Nature and Ecology]. Moscow: FGUP “GosGISTsentr”, 2004. 495 p.
  25. Ohlsson R. Boreal Forest and climate change. Ustoichivoe Lesopol., 2011, vol. 28, no. 3, pp. 27–38. (In Russ.).
  26. RD 52.04.563–2002. Kriterii opasnykh gidrometeorologicheskikh yavlenii i poryadok podachi shtormovogo soobshcheniya [Guidance Document 52.04.563–2002. Criteria for Dangerous Hydrometeorological Phenomena and the Procedure for Submitting a Storm Message]. Rosgidromet, 2002. 28 p.
  27. RD 52.04.720–2009. Polozhenie o repernykh klimaticheskikh stantsiyakh [Guidance Document 52.04.720–2009. Regulations on Reference Climate Stations]. Rosgidromet, 2009. 15 p.
  28. Russian forests and climate change. What Science Can Tell Us 11. Leskinen P., Lindner M., Verkerk P.J., Nabuurs G.J., Van Brusselen J., Kulikova E., Hassegawa M., Lerink B., Eds. European Forest Institute, 2020. https://doi.org/10.36333/wsctu11
  29. Shkolnik I.M., Efimov S.V. A new generation regional climate model for northern Eurasia. Trudy GGO, 2015, vol. 576, pp. 201–211. (In Russ.).
  30. Sostoyanie arkticheskikh morei i territorii v usloviyakh izmeneniya klimata. Sb. tezisov Vseross. Konf. s mezhdun. uchastiem [The State of the Arctic Seas and Territories in the Conditions of Climate Change: Abstracts of the All-Russian Conf. with Int. Participation]. Arkhangelsk: ID SAFU. 199 p.
  31. Torzhkov I.O., Kushnir E.A., Konstantinov A.V., Koroleva T.S., Efimov S.V., Shkolnik I.M. Assessment of future climate change impacts on forestry in Russia. Russ. Meteorol. Hydrol., 2019, vol. 44, no. 3, pp. 180–186. https://doi.org/10.3103/S1068373919030038
  32. Tyler N.J.C., Turi J.M., Sundset M.A., et al. Saami reindeer pastoralism under climate change: Applying a generalized framework for vulnerability studies to a sub-arctic social-ecological system. Glob. Environ. Change, 2007, vol. 17, no. 2, pp. 191–206. https://doi.org/10.1016/j.gloenvcha.2006.06.001
  33. Vasilev M.P., Kashirina E.V. Technology of weather and climate risks assessment in terms of SQL language. In Nekotorye aktual’nye problemy sovremennoi matematiki i matematicheskogo obrazovaniya. Gertsenovskie chteniya: Materialy Nauch. Konf. [Some Actual Problems of Modern Mathematics and Mathematical Education. Herzen Readings: Materials of the Sci. Conf.]. St. Petersburg: RGPU im. Gertsena, 2019, pp. 243–248. (In Russ.).
  34. Vasilev M.P., Kashirina E.V., Akentieva E.M. Database “Weather and Climate Risks for Economic and Social Sectors of the Subjects of the Russian Federation”. Certificate of state registration of the database RU 2018620868, 19.06.2018. № 2018620494, 26.04.2018. Federal Service for Intellectual Property. Moscow, 2018.
  35. Vasiliev M.P. Weather, climate, and environmental risks for terrestrial ecosystems in the north-western region of Russia. In Geologiya, geoekologiya, evolyutsionnaya geografiya: kollektivnaya monografiya. Tom 19 [Geology, Geoecology, Evolutionary Geography: A Collective Monograph. Vol. 19]. Nesterov E.M., Snytko V.A., Eds. St. Petersburg: RGPU im. Gertsena, 2020, pp. 233–238. (In Russ.).
  36. Vozdeistvie izmeneniya klimata na rossiiskuyu Arktiku: analiz i puti resheniya problemy [The Impact of Climate Change on the Russian Arctic: Analysis and Solutions to the Problem]. Kokorin A.O., Ed. Moscow: WWF, 2008. 27 p.
  37. Vtoroi otsenochnyi doklad Rosgidrometa ob izmeneniyakh klimata i ikh posledstviyakh na territorii Rossiiskoi Federatsii. Obshchee rezyume [The Second Evaluation Report of Roshydromet on Climate Change and Its Consequences on the Territory of the Russian Federation. General Summary]. Moscow: Rosgidromet, 2014. 59 p.
  38. Walker, X.J., Baltzer, J.L., Cumming, S.G., et al. Increasing wildfires threaten historic carbon sink of boreal forest soils. Nature, 2019, vol. 572, pp. 520–523. https://doi.org/10.1038/s41586-019-1474-y

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Average number of days with hazardous hydrometeorological phenomena in different parts of the North-West region of Russia: in the eastern part (a, b); in the northern part (c, d, e, f); in the south-western part (g, h); in the western part (i, j); in the southern part (l, m). Fractional values ​​on the number of days scale mean that hazardous hydrometeorological phenomena were observed on average once every few years: 0.1 – once every 10 years, 0.2 – twice every 10 years, etc.

Download (516KB)
3. Fig. 2. Average annual recurrence of hazardous hydrometeorological events in the North-West region of Russia (ArcGIS 10.1, interpolation using the kriging method). Dark green dots indicate weather stations, red dots indicate St. Petersburg and administrative centers of the subjects of the Russian Federation.

Download (275KB)
4. Fig. 3. Long-term changes in the number of cases and the number of days with dangerous hydrometeorological phenomena in the Arkhangelsk region in 1996–2017.

Download (168KB)
5. Fig. 4. Long-term changes in the number of days with air temperature passing through 0ºС in 1966–2019: (a) in winter in Vologda; (b) in autumn in Naryan-Mar.

Download (183KB)
6. Fig. 5. Long-term changes in the total annual number of days with air temperature above 0°C in 1966–2019 in Kaliningrad.

Download (84KB)
7. Fig. 6. Long-term changes in the amounts of precipitation of different types in 1961–2015 in Murmansk, mm.

Download (153KB)
8. Fig. 7. Long-term changes in the amounts of precipitation of different types in 1961–2015 in Naryan-Mar, mm.

Download (165KB)
9. Fig. 8. Long-term changes in the amounts of precipitation of different types in 1961–2015 in Amderma (Nenets Autonomous Okrug), mm.

Download (160KB)

Copyright (c) 2024 Russian Academy of Sciences