Remote sensing and geochemical monitoring of soils and vegetation cover of industrial waste dumping site (Kursk region)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The paper summarizes results of long-term remote sensing and geochemical monitoring of soils and vegetation cover influenced with abandoned industrial waste dumping site at the southern periphery of Kursk city. Analysis of prolonged image time series (1954–2018) has resulted in the reconstruction of natural landscape pattern in study area, mapping the expansion of waste deposit area under the period of active exploitation, delineation of five historic-functional zones of the dumping site. These zones are featured with different age and type of technogenic transformations in landscape structure, particular levels of heavy metals’ content and their distribution in soils and vegetation. Studies of spatial pattern and long-term (2000–2017) changes in contamination of soils and technogenic surface formations with heavy metals revealed that the maximum level of soil and vegetation pollution with heavy metals (Pb, Cd, Ni, Zn, Cu, Sb) is fixed for the zone of excavation, mixing and secondary burying of industrial wastes in 2000s. Increased concentrations of Sb and Zn still persist in surface soil layers of chernozems outside the territory of abandoned dumping site.

Full Text

Restricted Access

About the authors

I. V. Zamotaev

Institute of Geography, Russian Academy of Sciences

Author for correspondence.
Email: zivigran@yandex.ru
Russian Federation, Moscow

N. O. Telnova

Institute of Geography, Russian Academy of Sciences

Email: Telnova@igras.ru
Russian Federation, Moscow

O. V. Kaidanova

Institute of Geography, Russian Academy of Sciences

Email: zivigran@yandex.ru
Russian Federation, Moscow

T. I. Borisochkina

V.V. Dokuchaev Soil Science Institute

Email: zivigran@yandex.ru
Russian Federation, Moscow

S. B. Suslova

Institute of Geography, Russian Academy of Sciences

Email: zivigran@yandex.ru
Russian Federation, Moscow

References

  1. Abrosimov A.V., Nikolskiy D.B., Sheshukova L.V. Satellite images and GIS technologies for monitoring waste storage places. Geomatika, 2013, no. 1, pp. 38–43. (In Russ.).
  2. Arep’eva L.A. The plant communities of unauthorized dumps in urban territories of Kursk region. Uch. Zap.: Electr. Nauch. Zh. Kursk Gos. Univ. Nauki o Zemle., 2013, vol. 28, no. 4, pp. 34–41. (In Russ.).
  3. Brovkina O.V., Skoropisov D.Yu. Remote sensed monitoring of dumps (in Kronshtadt district of Saint-Petersburg). Sovr. Probl. DZZ Kosm., 2012, vol. 9, no. 1, pp. 153–155. (In Russ.).
  4. Doklad “О sostoyanii i okhrane okruzhayushchei sredy na territorii Kurskoi oblasti v 2017 godu” [Report “On the State and Protection of Environment in Kursk Oblast in 2017”]. Kursk: Administratsiya Kurskoi Oblasti, 2017. 158 p.
  5. Islamgulova A.F., Zhumabekova R., Kosolapova M.V., Skakova O.N. Monitoring of landfills and buffer zones based on earth remote sensing data. Vestn. Kazakhskogo Natsionaln. Univ., Ser. Geogr., 2016, vol. 43, no. 2, pp. 90–97. (In Russ.).
  6. Klassifikatsiya i diagnostika pochv Rossii [Classification and Diagnostics of Soils of Russia]. Smolensk: Oikumena Publ., 2004. 342 p.
  7. Klassifikatsiya i diagnostika pochv SSSR [Classification and Diagnostics of Soils of the Soviet Union]. Moscow: Kolos Publ., 1977. 224 p.
  8. Ladonin D.V. Forms of heavy metal compounds in technologically polluted soils. Extended Abstract of Doctoral (Biol.) Dissertation. Moscow: Moscow State Univ., 2016. 42 p.
  9. Lebed’-Sharlevich Ya.I. The estimate and projection of gas-geochemical state and ecological functions of soils on technogenic soils (on the example of Moscow). Extended Abstract of Cand. Sci. (Biol.) Dissertation. Moscow: Moscow State Univ., 2017. 27 p.
  10. Lipilin D.A. Distribution and dynamics of landfills disposal facilities in the Krasnodar region. Extended Abstract of Cand. Sci. (Geogr.) Dissertation. Krasnodar: Kuban State Univ., 2014. 23 p.
  11. Maiorova O.V. Possibilities of using remote sensing materials when handling solid household waste at the territorial level. Izv. VUZov, Ser. Geodeziya i Kartografiya, 2011, no. 3, pp. 70–74. (In Russ.).
  12. Metodicheskie rekomendatsii po geokhimicheskoi otsenke zagryazneniya territorii gorodov khimicheskimi elementami [Methodic Recommendations for Geochemical Assessment of Pollution of Urban Areas with Chemical Elements]. Moscow: IMGRE Publ., 1982. 112 p.
  13. Prokofyeva T.V., Martynenko I.A., Ivannikov F.A. Classification of Moscow soils and parent materials and its possible inclusion in the classification system of Russian soils. Euras. Soil Sci., 2011, no. 5, pp. 611–623. doi: 10.1134/S1064229311050127
  14. The Territorial Scheme of Waste Management, Including Municipal Solid Waste. Kursk Region. Approved by the Committee on Housing and Fuel and Energy of Kursk Region on 28 Octover 2016. Available at: https://adm.rkursk.ru/index.php?id=665&mat_id=61061 (accessed: 08.08.2019). (In Russ.).
  15. Titova A.G. Analysis of the geo-ecological impact of municipal solid waste landfills on environmental components using geoinformation technologies. In Geografiya, ekologiya, turizm: nauchnyi poisk studentov i aspirantov: materialy IV Vseross. n.-p. konf. [Geography, Ecology, Tourism: Research by Students: IV All-Russian Sci. Conf. Materials]. Tver: Tverskoi Gos. Univ., 2016, pp. 71–74. (In Russ.).
  16. Shibalova G.V. Usage of geoinformation technologies for monitoring the places of wastes storing. Prirodoobustroistvo, 2015, no. 3, pp. 22–26. (In Russ.).
  17. Beaumont B., Radoux J., Defourny P. Assessment of airborne and spaceborne thermal infrared remote sensing for detecting and characterizing landfills. WIT Trans. Ecol. Environ., 2014, vol. 180, pp. 237–248.
  18. Biottoa G., Silvestria S., Gobboa L., Furlana E., Valentia S., Rossellia R. GIS, multi-criteria and multi-factor spatial analysis for the probability assessment of the existence of illegal landfills. Int. J. Geogr. Inf. Sci., 2009, vol. 23, no. 10, pp. 1233–1244.
  19. Laul J.C., Weimer W.C., Rancitelli L.A. Biogeochemical distribution of rare earth elements and other trace elements in plants and soils. Phys. Chem. Earth, 1979, vol. 11, pp. 819–827.
  20. Mahmood K., Batool A., Faizi F., Chaudhry M.N., Ul-Haq Z., Rana A.D., Tariq S. Bio-thermal effects of open dumps on surroundings detected by remote sensing-Influence of geographical conditions. Ecol. Indic., 2017, vol. 82, pp. 131–142.
  21. Manzo C., Mei A., Zampetti E., Bassani C., Paciucci L., Manetti P. Top-down approach from satellite to terrestrial rover application for environmental monitoring of landfills. Sci. Total Environ., 2017, vol. 584–585, pp. 1333–1348. doi: 10.1016/j.scitotenv.2017.01.033
  22. Silvestri S., Omri M. A method for the remote sensing identification of uncontrolled landfills: formulation and validation. Int. J. Remote Sens., 2008, vol. 29, no. 4, pp. 975–989.
  23. Zakhem K., Jahjah S., Zakhem G., Ibrahim E. Investigating the evolution of Naameh landfill and its surrounding vegetation using multispectral spaceborne imagery. In 2016 3rd Int. Conf. on Advances in Computational Tools for Engineering Applications (ACTEA). IEEE, 2016, pp. 72–77. doi: 10.1109/ACTEA.2016.7560115
  24. Verloo M., Willaert G., Cottenie A. Determination of the upper critical levels of heavy metals in plants and soils. Stud. Environ. Sci., 1986, vol. 29, pp. 207–215.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Map of the location of the study area. Scale 1: 200,000.

Download (130KB)
3. Fig. 2. The reconstructed natural landscape structure of the landfill territory and changes in the boundaries of the waste storage zone during the period of active operation. The original scale is 1: 10,000.

Download (73KB)
4. Fig. 3. Chronofunctional zoning of an abandoned landfill and sampling points of soils and vegetation.

Download (73KB)
5. Fig. 4. Distribution of Ks of heavy metals (1 - cadmium; 2 - nickel; 3 - lead) in technogenic soils and bottom sedimentation areas of the bottom of the beam of different chronofunctional zones: 6–15 - number of sampling points; A - waste storage area of the 1970-1990s; In - zone of excavation, mixing and burial of waste; C - zone of surface debris in the bottom of the beam.

Download (67KB)
6. Fig. 5. The differentiation of Ks of heavy metals in the profile of toxindustrate: 1 - cadmium; 2 - nickel; 3 - lead.

Download (110KB)

Copyright (c) 2019 Russian academy of sciences