Monitoring of CO2 fluxes on Svalbard: land use alters the gas exchange in the arctic tundra

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The article summarized the results of long-term observations (2014–2018) of soil emissions and net CO2 fluxes (2017–2018) in natural and anthropogenically modified (AI) ecosystems of Arctic tundra on the territory of the archipelago of Svalbard (Barentsburg, 78°04′N, 14°13′E). Anthropogenic controls associated with local land use, during the period of their active impact may redouble the emissions of carbon dioxide from soil (0.111 ± 0.021 > 0.064 ± 0.011 gС m–2h–1). During the same period, the net C-balance at the sites with active land use is estimated as a source to the atmosphere. Self-recovering after human influence plots (II) demonstrate intermediate values of soil emissions of СО2 between unaffected tundra (I) and plots with active land use (III). With that they demonstrate the greatest net C-sink within the observed range of Photosynthetically Active Radiation as compared to (I) and (III). At the height of the vegetation period unaffected tundra ecosystems demonstrate a neutral net C-balance. The greatest contribution to soil emissions variance make spatial controls (they explain 56–66% of variance), whereas temporal factors are responsible for 3.8–5.5% only. Amongst spatial controls, the thickness of organogenic layer makes the greatest contribution. Inter-annual fluctuations of key factors, among which the most important are the soil moisture and temperature of the upper soil layer, both affect AI and natural ecosystems hence the spatial differences between them remain constant from year to year. According to preliminary estimates, unlike the carbon dioxide, the contribution of methane and nitrous oxide net fluxes in local ecosystems is insignificant and does not depend on human land use.

Texto integral

Acesso é fechado

Sobre autores

D. Karelin

Institute of Geography, Russian Academy of Sciences; Centre for Problems of Ecology and Productivity of Forests, Russian Academy of Sciences

Autor responsável pela correspondência
Email: dkarelin7@gmail.com
Rússia, Moscow

E. Zazovskaya

Institute of Geography, Russian Academy of Sciences

Email: dkarelin7@gmail.com
Rússia, Moscow

V. Shishkov

Institute of Geography, Russian Academy of Sciences

Email: dkarelin7@gmail.com
Rússia, Moscow

A. Dolgikh

Institute of Geography, Russian Academy of Sciences

Email: dkarelin7@gmail.com
Rússia, Moscow

A. Sirin

Institute of Forest Science, Russian Academy of Sciences

Email: dkarelin7@gmail.com
Rússia, Uspenskoe (Moscow region)

G. Suvorov

Institute of Forest Science, Russian Academy of Sciences

Email: dkarelin7@gmail.com
Rússia, Uspenskoe (Moscow region)

A. Azovsky

Lomonosov Moscow State University

Email: dkarelin7@gmail.com

Faculty of Biology

Rússia, Moscow

N. Osokin

Institute of Geography, Russian Academy of Sciences

Email: dkarelin7@gmail.com
Rússia, Moscow

Bibliografia

  1. Karelin D.V., Zamolodchikov D.G. Uglerodnyi obmen v kriogennykh ekosistemakh [Carbon Exchange in Cryogenic Ecosystems]. Moscow: Nauka Publ., 2008. 344 p.
  2. Karelin D.V., Goryachkin S.V., Zamolodchikov D.G., Dolgikh A.V., Zazovskaya E.P., Shishkov V.A., Pochikalov A.V., Sirin A.A., Suvorov G.G, Kraev G.N. The influence of local anthropogenic factors on soil emission of biogenic greenhouse gases in cryogenic ecosystems. Zh. Obshchei Biol., 2016, vol. 77, no. 3, pp. 167–181. (In Russ.).
  3. Karelin D.V., Goryachkin S.V., Zamolodchikov D.G., Dolgikh A.V., Zazovskaya E.P., Shishkov V.A., Kraev G.N. Impact of various types of anthropogenic impact on greenhouse gas emissions in permafrost ecosystems. Dokl. Akad. Nauk., 2017, vol. 477, no. 5, pp. 610–612. (In Russ.). doi: 10.7868/S0869565217350225
  4. Baburin V.L., Badina S.V., Bolysov S.I., Bocharnikov M.V., et al. Natsional’nyi atlas Arktiki [National Atlas of the Arctic]. Moscow: Roskartografiya, 2017. 496 p.
  5. The trust “Arktikugol”. The official site of FSUE “GT” Arktikugol, 2019. Available at: http://www.arcticugol.ru/index.php/about/trest-arktikugol (accessed: 07.08.2019). (In Russ.).
  6. Anderson M.J., Gorley R.N., Clarke R.K. PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods. Plymouth: PRIMER-E Ltd, 2008. 214 p.
  7. IPCC. Climate Change 2014: Synthesis Report: Contribution of Working Groups I, II, and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Core Writing Team, Pachauri R.K., Meyer L.A., Eds. Geneva, Switzerland: IPCC, 2014. 151 p.
  8. Tishkov A.A. The ecosystems of the west coast of Spitsbergen (Svalbard archipelago). Polar Geogr., 1985, vol. 9, no. 1, 1985, pp. 70–83.
  9. Tarnokai C., Canadell J.G., Schuur E.A.G., Kuhry P., Mazhitova G., Zimov S. Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochem. Cy., 2009, vol. 23, no. 2, pp. 1–11.
  10. Yakushev V.S., Chuvilin E.M. Natural gas and gas hydrate accumulations within permafrost in Russia. Cold Regi. Sci. Technol., 2000, vol. 31, no. 3, pp. 189–197.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian academy of sciences, 2019