Binary proton therapy of Ehrlich carcinoma using targeted gold nanoparticles
- 作者: Filimonova M.V.1,2, Kolmanovich D.D.3,4, Tikhonowski G.V.2, Petrunya D.S.4,2, Kotelnikova P.A.5, Shitova A.A.1, Soldatova O.V.1, Filimonov A.S.1, Rybachuk V.A.1, Kosachenko A.O.1, Nikolaev K.A.1, Demyashkin G.A.1, Popov A.A.2, Savinov M.S.2, Popov A.L.3,4, Zelepukin I.V.5, Lipengolts A.A.2,6, Shpakova K.E.2,6, Kabashin A.V.7, Koryakin S.N.1,2, Deyev S.M.5, Zavestovskaya I.N.4,2
-
隶属关系:
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences
- P.N. Lebedev Physical Institute of the Russian Academy of Sciences
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
- Institution N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation
- Aix-Marseille University
- 期: 卷 516, 编号 1 (2024)
- 页面: 59-63
- 栏目: Articles
- URL: https://journals.eco-vector.com/2686-7389/article/view/651431
- DOI: https://doi.org/10.31857/S2686738924030104
- EDN: https://elibrary.ru/VTOKHA
- ID: 651431
如何引用文章
详细
Proton therapy can treat tumors located in radiation-sensitive tissues. This article demonstrates the possibility of enhancing the proton therapy with targeted gold nanoparticles that selectively recognize tumor cells. Au-PEG nanoparticles at concentrations above 25 mg/L and 4 Gy proton dose caused complete death of EMT6/P cells in vitro. Binary proton therapy using targeted Au-PEG-FA nanoparticles caused an 80% tumor growth inhibition effect in vivo. The use of targeted gold nanoparticles is promising for enhancing the proton irradiation effect on tumor cells and requires further research to increase the therapeutic index of the approach.
全文:

作者简介
M. Filimonova
National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Email: d.petrunya@lebedev.ru
A. Tsyb Medical Radiological Research Centre, Obninsk Institute for Nuclear Power Engineering
俄罗斯联邦, Obninsk; ObninskD. Kolmanovich
Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences; P.N. Lebedev Physical Institute of the Russian Academy of Sciences
Email: d.petrunya@lebedev.ru
俄罗斯联邦, Pushchino; Moscow
G. Tikhonowski
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Email: d.petrunya@lebedev.ru
俄罗斯联邦, Moscow
D. Petrunya
P.N. Lebedev Physical Institute of the Russian Academy of Sciences; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
编辑信件的主要联系方式.
Email: d.petrunya@lebedev.ru
俄罗斯联邦, Moscow; Moscow
P. Kotelnikova
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
Email: d.petrunya@lebedev.ru
俄罗斯联邦, Moscow
A. Shitova
National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation
Email: d.petrunya@lebedev.ru
A. Tsyb Medical Radiological Research Centre
俄罗斯联邦, ObninskO. Soldatova
National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation
Email: d.petrunya@lebedev.ru
A. Tsyb Medical Radiological Research Centre
俄罗斯联邦, ObninskA. Filimonov
National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation
Email: d.petrunya@lebedev.ru
A. Tsyb Medical Radiological Research Centre
俄罗斯联邦, ObninskV. Rybachuk
National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation
Email: d.petrunya@lebedev.ru
A. Tsyb Medical Radiological Research Centre
俄罗斯联邦, ObninskA. Kosachenko
National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation
Email: d.petrunya@lebedev.ru
A. Tsyb Medical Radiological Research Centre
俄罗斯联邦, ObninskK. Nikolaev
National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation
Email: d.petrunya@lebedev.ru
A. Tsyb Medical Radiological Research Centre
俄罗斯联邦, ObninskG. Demyashkin
National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation
Email: d.petrunya@lebedev.ru
A. Tsyb Medical Radiological Research Centre
俄罗斯联邦, ObninskA. Popov
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Email: d.petrunya@lebedev.ru
俄罗斯联邦, Moscow
M. Savinov
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Email: d.petrunya@lebedev.ru
俄罗斯联邦, Moscow
A. Popov
Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences; P.N. Lebedev Physical Institute of the Russian Academy of Sciences
Email: d.petrunya@lebedev.ru
俄罗斯联邦, Pushchino; Moscow
I. Zelepukin
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
Email: d.petrunya@lebedev.ru
俄罗斯联邦, Moscow
A. Lipengolts
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute); Institution N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation
Email: d.petrunya@lebedev.ru
俄罗斯联邦, Moscow; Moscow
K. Shpakova
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute); Institution N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation
Email: d.petrunya@lebedev.ru
俄罗斯联邦, Moscow; Moscow
A. Kabashin
Aix-Marseille University
Email: d.petrunya@lebedev.ru
法国, Marseille
S. Koryakin
National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Email: d.petrunya@lebedev.ru
A. Tsyb Medical Radiological Research Centre, Obninsk Institute for Nuclear Power Engineering
俄罗斯联邦, Obninsk; ObninskS. Deyev
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
Email: d.petrunya@lebedev.ru
Academician of the RAS
俄罗斯联邦, MoscowI. Zavestovskaya
P.N. Lebedev Physical Institute of the Russian Academy of Sciences; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Email: d.petrunya@lebedev.ru
俄罗斯联邦, Moscow; Moscow
参考
- Durante M., Loeffler J.S. Charged Particles in Radiation Oncology // Nat. Rev. Clin. Oncol. 2010. V. 7(1). P. 37–43. https://doi.org/10.1038/nrclinonc.2009.183
- Lo C.Y., Tsai S.W., Niu H., et al. Gold-nanoparticles-enhanced Production of Reactive Oxygen Species in Cells at Spread-out Bragg Peak under Proton Beam Radiation // ACS Omega. 2023. V. 8(20). P. 17922–17931.
- Martínez‐Rovira I., Prezado Y. Evaluation of the Local Dose Enhancement in the Combination of Proton Therapy and Nanoparticles // Med. Phys. 2015. V. 42(11). P. 6703–6710.
- Zwiehoff S., Johny J., Behrends C., et al. Enhancement of Proton Therapy Efficiency by Noble Metal Nanoparticles is Driven by the Number and Chemical Activity of Surface Atoms // Small. 2022. V. 18(9). P. e2106383.
- Zavestovskaya I.N., Popov A.L., Kolmanovich D.D., et al. Boron Nanoparticle-enhanced Proton Therapy for Cancer Treatment // Nanomaterials (Basel). 2023. V. 13(15). P. 2167.
- Gerken L.R.H., Gogos A., Starsich F.H.L., et al. Catalytic Activity Imperative for Nanoparticle Dose Enhancement in Photon and Proton Therapy // Nat. Commun. 2022. V. 13(1). 3248.
- Zelepukin I.V., Griaznova O.Yu., Shevchenko K.G., et al. Flash Drug Release from Nanoparticles Accumulated in the Targeted Blood Vessels facilitates the Tumour Treatment // Nat. Commun. 2022. V. 13(1). 6910.
- Tolmachev V.M., Chernov V.I., Deyev S.M. Targeted Nuclear Medicine. Seek and Destroy // Russ. Chem. Rev. 2022. V. 91(3). RCR5034.
- Li S., Bouchy S., Penninckx S., Marega R., et al. Antibody-functionalized Gold Nanoparticles as Tumor Targeting Radiosensitizers for Proton Therapy // Nanomedicine. 2019. V. 14(3). P. 317–333.
- Kang S.H., Hong S.P., Kang B.S. Targeting Chemo-proton Therapy on C6 Cell Line Using Superparamagnetic Iron Oxide Nanoparticles Conjugated with Folate and Paclitaxel // International Journal of Radiation Biology. 2018. V. 94(11). P. 1006–1016.
- Siwowska K., Haller S., Bortoli F., et al. Preclinical Comparison of Albumin-binding Radiofolates: Impact of Linker Entities on the in Vitro and in Vivo Properties // Mol. Pharm. 2017. V. 14(2). P. 523–532.
- Popov A.A., Swiatkowska-Warkocka Z., Marszalek M., et al. Laser-ablative Synthesis of Ultrapure Magneto-plasmonic Core-satellite Nanocomposites for Biomedical Applications // Nanomaterials (Basel). 2022. V. 12(4). 649.
- Gao J., Huang X., Liu H., Zan F., Ren J. Colloidal Stability of Gold Nanoparticles Modified with Thiol Compounds: Bioconjugation and Application in Cancer Cell Imaging // Langmuir. 2012. V. 28(9). P. 4464–4471.
- R S., M Joseph M., Sen A., K R.P., Bs U., Tt S. Galactomannan Armed Superparamagnetic Iron Oxide Nanoparticles as a Folate Receptor Targeted Multi-functional Theranostic Agent in the Management of Cancer // Int. J. Biol. Macromol. 2022. V. 219. P. 740–753.
- Baibarac M., Smaranda I., Nila A., Serbschi C. Optical Properties of Folic Acid in Phosphate Buffer Solutions: The Influence of pH and UV Irradiation on the UV–VIS Absorption Spectra and Photoluminescence // Sci. Rep. 2019. V. 9(1). 14278.
- Filimonova M., Shitova A., Soldatova O., et al. Combination of NOS- and PDK-Inhibitory Activity: Possible Way to Enhance Antitumor Effects // Int. J. Mol. Sci. 2022. V. 23. 730.
补充文件
