Two stages of formation of the Yakhton tungsten-polymetallic-gold deposit (Southern Tien Shan, Uzbekistan): first isotopic U–Pb age data on zircon (LA-ICP-MS method) from the intrusive rocks of the Yakhton stock

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The paper presents first isotopic U–Pb zircon data (LA-ICP-MS method) on the intrusive rocks from the Yakhton stock, which is spatially and probably genetically related to the Yakhton tungsten skarn (tungsten-polymetallic-gold) deposit. This deposit, together with the other W and Au deposits, is part of the largest Au–W metallogenic belt of Tien Shan. The deposit is represented by zones of hydrothermally-altered skarn with scheelite and sulfides (pyrrhotite, chalcopyrite), and later (overprinting) near- and within-intrusive stockworks of veins and veinlets of late metasomatites (propylitic and phyllic alteration) with scheelite-gold and Ag-polymetallic mineralization. The concordant isotopic zircon U–Pb data obtained (305±2 Ma for the early monzonite-quartz monzonite, 304±2 Ma for the granodiorite of the main phase, and 285.4±1.8 Ma for granite) indicate the intrusion emplacement in the Late Carboniferous-Early Permian. This is similar to the dates of the intrusions at the large Jialu Au–W deposit, which is situated in the same metallogenic zone and comprises, together with the early scheelite skarn, also late metasomatites with intense Au–W mineralization corresponding to a large Au deposit. Such age, geological and metallogenic proximity to the Jilau deposit highlights a potential of discovery of significantly greater, than it is currently known, Au–W mineralization at the Yakhton deposit.

Sobre autores

S. Soloviev

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences

Email: serguei07@mail.ru
Moscow, Russia

S. Kryazhev

Central Research Institute of Geological Prospecting for Base and Precious Metals

Moscow, Russia

D. Semenova

V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of Sciences

Novosibirsk, Russia

Y. Kalinin

V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of Sciences

Novosibirsk, Russia

N. Bortnikov

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences

Moscow, Russia

Bibliografia

  1. Kudrin V.S., Soloviev S.G., Stavinsky V.A., Kabardin L.L. The gold-copper-molybdenum-tungsten ore belt of the Tien Shan // Internat. Geol. Rev. 1990. V. 32. P. 930–941.
  2. Yakubchuk A., Cole A., Seltmann R., Shatov V. Tectonic setting, characteristics and regional exploration criteria for gold mineralization in central Eurasia: the southern Tien Shan province as a key example / In: Eds. R. Goldfarb, R. Nielsen. Integrated Methods for Discovery: Global Exploration in Twenty-First Century // Economic Geology Special Publication. 2002. V. 9. P. 77–201.
  3. Soloviev S.G., Kryazhev S.G. Tungsten mineralization in the Tien Shan Gold Belt: Geology, petrology, fluid inclusion, and stable isotope study of the Ingichke reduced tungsten skarn deposit, Western Uzbekistan // Ore Geology Reviews. 2018. V. 101. P. 700–724.
  4. Soloviev S.G., Kryazhev S.G. Geology, mineralization, and fluid inclusion characteristics of the Koitash W–Mo skarn and W–Au stockwork deposit, Western Uzbekistan, Tien Shan // Mineralium Deposita. 2019. V. 54(8). P. 1179–1206.
  5. Seltmann R., Konopelko D., Biske G., Divaev F., Sergeev S. Hercynian post-collisional magmatism in the context of Paleozoic magmatic evolution of the Tien Shan orogenic belt // Journal of Asian Earth Sciences. 2011. V. 42. P. 821–838.
  6. Сайитов С.С., Цой В.Д. Минералого-геохимические особенности и перспективы на комплексное оруденение месторождения Яхтон (горы Чакыл-Калян, Узбекистан) // Известия Томского политехнического университета. Инжиниринг георесурсов. 2023. Т. 334. № 9. 76–90.
  7. Жураев М.Н., Тураев Т.Н., Мухаммадиев Б.У. Геохимические особенности апогранитоидного вольфрамового оруденения (на примере нижнего яруса месторождения Яхтон) // Отечественная геология. 2018. № 6. С. 43–50.
  8. Соловьев С.Г., Кряжев С.Г., Семенова Д.В., Калинин Ю.А., Бортников Н.С. Два этапа рудообразования в W–Au металлогеническом поясе Южного Тянь-Шаня: данные изотопного U–Pb датирования циркона (метод LA-ICP-MS) из интрузивных пород W–Au месторождения Джилау (Таджикистан) // Доклады РАН. Науки о Земле. 2023. T. 512(2). C. 190–198.
  9. Соловьев С.Г. Монцонитоидные ассоциации полиметаллически-вольфрамовых месторождений Южного Тянь-Шаня // Отечественная геология. 1994. № 1. С. 8–18.
  10. Soloviev S.G., Kryazhev S.G., Dvurechenskaya S.S. Geology, mineralization, and fluid inclusion characteristics of the Agylki tungsten skarn deposit, Eastern Siberia, Yakutia, Russia: tungsten deposit in a gold-dominant metallogenic province // Ore Geology Reviews. 2020. V. 120. Paper 103452. P. 1–25.
  11. Даутов А. Минералого-геохимические критерии условий формирования и потенциальной рудоносности Кошрабадского и Яхтонского интрузивов (Западный Узбекистан). Автореф. … дис. к. г.- м. н. Ташкент: ИГГ АН УзбССР, 1974. 26 с.
  12. Soloviev S.G. Rare-earth and other trace elements in rocks from W-bearing magmatic complexes of the Southern Tien Shan // Geochemistry International. 1998. V. 36(12). P. 1133–1146.
  13. Griffin W.L., Powell W.J., Pearson N.J., O’Reilly S.Y. GLITTER: Data reduction software for laser ablation ICP-MS / Ed. P. Sylvester // Miner. Assoc. of Canada, Short Course Series. 2008. V. 40. P. 307–311.
  14. Hiess J., Condon D.J., McLean N., Noble S.R. 238U/235U systematics in terrestrial uranium-bearing minerals // Science. 2012. V. 335. P. 1610–1614.
  15. Slama J., Kosler J., Condon D.J. et al. Plesovice zircon – a new natural reference material for U–Pb and Hf isotopic microanalysis // Chemical Geology. 2008. V. 249. № 1–2. P. 1–35.
  16. Ludwig K. User’s Manual for Isoplot 3.00. Berkeley, CA: Berkeley Geochronology Center, 2003. P. 1–70.
  17. Black L.P., Kamo S.L., Allen C.M. et al. Improved206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards // Chemical Geology. 2004. V. 205. P. 115–140.
  18. Miller J.S., Matzel J.E., Miller C.F., Burgess S.D., Miller R.B. Zircon growth and recycling during the assembly of large, composite arc plutons // J. Volcanol. Geotherm. Res. 2007. V. 167. № 1/4. P. 282–299.
  19. Konopelko D., Seltmann R., Mamadjanov Y., Romer R.L., Rojas-Agramonte Y., Jeffries T., Fidaev D., Niyozov A. A geotraverse across two paleo-subduction zones in Tien Shan, Tajikistan // Gondwana Research. 2017. V. 47. P. 110–130.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025