Britholite-based matrix for actinides isolation

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

Britholite, a Ca-REE silicate sample with an apatite structure, was produced by cold crucible induction melting. Britholite has a simple composition, high capacity for actinides, and is stable in heated aqueous solutions. For the first time, the leaching rates of Nd (imitator of minor actinides) with water and brine at 200–250°C were determined to be 10–3 – 10–5 g/(m2 × day), which corresponds to a congruent dissolution of the matrix at a rate of 1 micron per 3–300 years.

Sobre autores

I. Mel’nikova

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry of the Russian Academy of Sciences, Moscow, Russia

S. Yudintsev

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry of the Russian Academy of Sciences, Moscow, Russia

Email: yudintsevsv@gmail.com

Bibliografia

  1. Donald I.W. Waste immobilization in glass and ceramic-based hosts: radioactive, toxic, and hazardous wastes. UK: Wiley & Sons Ltd., 2010. 507 p.
  2. Ringwood A.E. Disposal of high-level nuclear wastes: a geological perspective // Mineralogical Magazine. 1985. V. 49. P. 159–176.
  3. Юдинцев С.В. Изоляция фракционированных отходов ядерной энергетики // Радиохимия. 2021. Т. 63. № 5. С. 403–430.
  4. McCarthy G.J. High-level waste ceramics: materials considerations, process simulation, and product characterization // Nuclear Technology. 1977. V. 32 (1). P. 92–105.
  5. Oberti R., Ottolino L., Della Ventura G., Parodi G.C. On the symmetry and crystal chemistry of britholite: New structural and microanalytical data // American Mineralogist. 2001. V. 86. P. 1066–1075.
  6. Лившиц Т.С. Бритолиты, как природные аналоги матриц актинидов: устойчивость к радиационным разрушениям // Геология рудных месторождений. 2006. Т. 48. № 5. С. 410–422.
  7. Hughes J.M., Rakovan J.F. Structurally robust, chemically diverse: apatite and apatite supergroup minerals // Elements. 2015. V. 11. P. 165–170.
  8. Pasero M., Kampf A.R., Ferraris C., Pekov I.V., Rakovan J., White T.J. Nomenclature of the apatite supergroup minerals // European Journal of Mineralogy. 2010. V. 22. P. 163–179.
  9. Guy C., Audubert F., Lartigue J.-E., Latrille C., Advocat T., Fillet C. New conditionings for separated long-lived radionuclides // Comptes Rendus Physique. 2002. V. 3. P. 827–837.
  10. Hosseini S.M., Navrotsky A. Energetic effects of substitution of La–Nd and Si–Ge oxyapatite – type materials // Journal of American Ceramic Society. 2013. V. 96. P. 3915–3919.
  11. Crum J., Maio V., McCloy J. Cold crucible induction melter studies for making glass ceramic waste forms: A feasibility assessment // Journal of Nuclear Materials. 2014. V. 444. P. 481–492.
  12. McCloy J.S., Schuller S. Vitrification of wastes: from unwanted to controlled crystallization, a review // Comptes Rendus Géoscience. 2022. V. 354. Special Issue S1. P. 121–160.
  13. Юдинцев С.В., Стефановский С.В., Каленова М.Ю., Никонов Б.С., Никольский М.С., Кощеев А.М., Щепин А.С. Матрицы для иммобилизации отходов редкоземельно–актинидной фракции, полученные методом индукционного плавления в холодном тигле // Радиохимия. 2015. Т. 57. № 3. С. 272–282.
  14. Terra O., Dacheux N., Audubert F., Podor R. Immobilization of tetravalent actinides in phosphate ceramics // Journal of Nuclear Materials. 2006. V. 352. Iss. 1–3. P. 224–232.
  15. Ahn B.G., Park H.S., Kim I.T., Cho Y.J., Lee H.S. Immobilization of lanthanide oxides waste from pyrochemical process // Energy Procedia. 2011. V. 7. P. 529–533.
  16. Peterson J.A., Crum J.V., Riley B.J., Asmussen R.M., Neeway J.J. Synthesis and characterization of oxyapatite [Ca2Nd8(SiO4)6O2] and mixed-alkaline-earth powellite [(Ca, Sr, Ba)MoO4] for a glassceramic waste form // Journal of Nuclear Materials. 2018. V. 510. P. 623–634.
  17. Neeway J.J., Asmussen R.M., McElroy E.M., Peterson J.A., Riley B.J., Crum J.V. Kinetics of oxyapatite [Ca2Nd8(SiO4)6O2] and powellite [(Ca, Sr, Ba)MoO4] dissolution in glass-ceramic nuclear waste forms in acidic, neutral, and alkaline conditions // Journal of Nuclear Materials. 2019. V. 515. P. 227–237.
  18. Miro S., Sellami N., Chevreux P., Jouan G., Tribet M., Jégou C., Bardez-Giboire I., Peuget S. Monitoring of alpha-decay radiation damage in a Am-doped glass-ceramic material // Journal of Nuclear Materials. 2023. V. 580. 154397.
  19. Weber W.J., Matzke Hj. Effects of radiation on microstructure and fracture properties in Ca2Nd8(SiO4)6О2 // Materials Letters. 1986. V. 5. Iss. 1–2. P. 9–16.
  20. Gong W.L., Wang L.M., Ewing R.C. Transmission electron microscopy study of α-decay damage in aeshinite and britholite // Proceedings of the Materials Research Society Symposium. V. 465. 1997. P. 649–656.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025