Huntington’s disease

Cover Page

Abstract


Huntington’s disease is one of the most common hereditary neurodegenerative diseases, which remains practically incurable, inevitably leading to the disability of patients and premature death. A fairly wide prevalence in the world, the special severity of the course, the almost complete penetrance of the mutant gene, the peculiarity of clinical and genetic correlations in Huntington’s disease have attracted researchers specializing in neuroscience for many years. The study of the molecular neurobiology of Huntington’s disease over the past decades has largely contributed to significant progress in molecular biology, genetics, and many other biomedical disciplines. At the same time, Huntington’s disease has become a “model” disease in resolving issues of genetic counseling and prognostic testing in modern medical genetics. The review provides brief facts on the history of the study of the disease, including mapping and identification of the mutant gene. The issues of etiology and pathogenesis, molecular genetics of the disease, epidemiology, diagnostics, and differential diagnostics are discussed in detail. The spectrum of clinical manifestations of Huntington’s disease, its various forms, and course features are presented. From a modern perspective, the problem of developing valid biomarkers of both the manifest and the asymptomatic stages of the disease, as well as the course of the pathological process, are highlighted. The main issues of primary and secondary prevention of Huntington’s disease, bioethical principles of conducting genetic counseling for families burdened by this disease are outlined. The approaches to the symptomatic treatment of Huntington’s disease are described, a review of the main promising experimental therapeutic methods that can potentially slow down or stop the progression of the disease, as well as prevent its manifestation in asymptomatic carriers of the mutant gene, are presented. An important contribution of patient organizations to addressing issues affecting the interests of burdened families, scientific and clinical research on the disease was noted. Literature was searched and analyzed using the databases of Scopus, Web of Science, Pubmed (MedLine), eLibrary.


Full Text

Restricted Access

About the authors

Sergey A. Klyushnikov

Research Center of Neurology

Author for correspondence.
Email: sergeklyush@gmail.com
ORCID iD: 0000-0002-8752-7045

Russian Federation, Moscow

M.D., Ph.D., leading researcher of the 5th department of neurology of the Research Center of Neurology

References

  1. Huntington G. On Chorea. Med. Surg. Rep. 1872; 26: 317-21.
  2. Gusella J.F., Wexler N.S., Conneally P.M., Naylor S.L., Anderson M.A., Tanzi R.E., et al. A polymorphic DNA marker genetically linked to Huntington’s disease. Nature. 1983; 306(5940): 234-38. DOI: http://doi.org/10.1038/306234a0
  3. Huntington’s Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell. 1993; 72(6): 971-83. DOI: http://doi.org/10.1016/0092-8674(93)90585-e
  4. Illarioshkin S.N., Klyushnikov S.A., Seliverstov Yu.A. Huntington’s Disease [Bolezn’ Gentingtona]. Moscow: Atmosfera; 2018. (in Russian)
  5. Baig S.S., Strong M., Quarrell O.W.J. The global prevalence of Huntington’s disease: a systematic review and discussion. Neurodegener. Dis. Manag. 2016; 6(4): 331-43. DOI: http://doi.org/10.2217/nmt-2016-0008
  6. Seliverstov Yu.A., Dranitsyna M.A., Kravchenko M.A., Klyushnikov S.A., Illarioshkin S.N. Epidemiology of Huntington’s disease in Russian Federation. In: Illarioshkina S.N., Levina O.S., eds. Parkinson’s Disease and Movement Disorders: Physician’s Guide. Based on the Materials of the IV National Congress on Parkinson’s Disease and Movement Disorders (with International Participation) [Bolezn’ Parkinsona i rasstroystva dvizhenii: Rukovodstvo dlya vrachey. Po materialam IV Natsional’nogo kongressa po bolezni Parkinsona i rasstroystvam dvizhenii (s mezhdunarodnym uchastiem)]. Moscow; 2017: 244-6. (in Russian)
  7. Folstein S.E. Huntington’s disease: a disorder of families. Baltimore: Johns Hopkins University Press; 1989.
  8. Agostinho L.A., dos Santos S.R., Alvarenga R.M.P., Paiva C.L.A. A systematic review of the intergenerational aspects and the diverse genetic profiles of Huntington’s disease. Genet. Mol. Res. 2013; 12(2): 1974-81. DOI: http://doi.org/10.4238/2013.June.13.6
  9. Illarioshkin S.N. Diseases caused by the expansion of tandem microsatellite repeats. In: Gintera E.K., Puzyreva V.P., eds. Hereditary Diseases: National Guide [Nasledstvennye bolezni: natsional’noe rukovodstvo]. Moscow: Geotar-Media; 2016: 259-90. (in Russian)
  10. OMIM Entry. HUNTINGTIN; HTT. Available at: http://www.omim.org/entry/613004
  11. Illarioshkin S.N., Ivanova-Smolenskaya I.A., Markova E.D. Novel Mutational Mechanism in Man: Expansion of Trinucleotide Repeats. Genetika. 1995; 31(11): 1478-89. (in Russian)
  12. Bates G.P., Dorsey R., Gusella J.F., Hayden M.R., Kay C., Leavitt B.R., et al. Huntington disease. Nat. Rev. Dis. Primers. 2015; 1: 15005. DOI: http://doi.org/10.1038/nrdp.2015.5
  13. Klintschar M., Dauber E.M., Ricci U., Cerri N., Immel U.D., Kleiber M., et al. Haplotype studies support slippage as the mechanism of germline mutations in short tandem repeats. Electrophoresis. 2004; 25(20): 3344-8. DOI: http://doi.org/10.1002/elps.200406069
  14. Xu Z., Tito A., Rui Y.N., Zhang S. Studying polyglutamine diseases in Drosophila. Exp. Neurol. 2015; 274(Pt. A): 25-41. DOI: http://doi.org/10.1016/j.expneurol.2015.08.002
  15. Illarioshkin S.N. Conformational Brain Diseases [Konformatsionnye bolezni mozga]. Moscow: Yanus-K; 2003. (in Russian)
  16. Myers R.H. Huntington’s disease genetics. NeuroRx. 2004; 1(2): 255-62. DOI: http://doi.org/10.1602/neurorx.1.2.255
  17. Panegyres P.K., Shu C.C., Chen H.Y., Paulsen J.S. Factors influencing the clinical expression of intermediate CAG repeat length mutations of the Huntington’s disease gene. J. Neurol. 2015; 262(2): 277-84. DOI: http://doi.org/10.1007/s00415-014-7559-5
  18. Milunsky J.M., Maher T.A., Loose B.A., Darras B.T., Ito M. XL PCR for the detection of large trinucleotide expansions in juvenile Huntington’s disease. Clin. Genet. 2003; 64(1): 70-3. DOI: http://doi.org/10.1034/j.1399-0004.2003.00108.x
  19. Semaka A., Kay C., Doty C., Collins J.A., Bijlsma E.K., Richards F., et al. CAG size-specific risk estimates for intermediate allele repeat instability in Huntington disease. J. Med. Genet. 2013; 50(10): 696-703. DOI: http://doi.org/10.1136/jmedgenet-2013-101796
  20. Nahhas F., Garbern J., Feely S., Feldman G.L. An intergenerational contraction of a fully penetrant Huntington disease allele to a reduced penetrance allele: interpretation of results and significance for risk assessment and genetic counseling. Am. J. Med. Genet. 2009; 149A(4): 732-6. DOI: http://doi.org/10.1002/ajmg.a.32720
  21. Duyao M., Ambrose C., Myers R., Novelletto A., Persichetti F., Frontali M., et al. Trinucleotide repeat length instability and age of onset in Huntington’s disease. Nat. Genet. 1993; 4(4): 387-92. DOI: http://doi.org/10.1038/ng0893-387
  22. Illarioshkin S.N., Igarashi S., Onodera O., Markova E.D., Nikolskaya N.N., Tanaka H., et al. Trinucleotide repeat length and rate of progression of Huntington’s disease. Ann. Neurol. 1994; 36(4): 630-5. DOI: http://doi.org/10.1002/ana.410360412
  23. Ponzi A., Barton S.J., Bunner K.D., Rangel Barajas C., Zhang E.S., Miller B.R., et al. Striatal network modeling in Huntington’s Disease. PLoS Comput. Biol. 2020; 16(4): e1007648. DOI: http://doi.org/10.1371/journal.pcbi.1007648
  24. Tabrizi S.J., Scahill R.I., Owen G., Durr A., Leavitt B.R., Roos R.A., et al. Predictors of phenotypic progression and disease onset in premanifest and early-stage Huntington’s disease in the TRACK-HD study: analysis of 36-month observational data. Lancet Neurol. 2013; 12(7): 637-49. DOI: http://doi.org/10.1016/S1474-4422(13)70088-7
  25. Risacher S.L., Saykin A.J. Neuroimaging biomarkers in neurodege¬nerative diseases and dementia. Semin. Neurol. 2013; 33(4): 386-416. DOI: http://doi.org/10.1055/s-0033-1359312
  26. Illarioshkin S.N., Klyushnikov S.A., Vigont V.A., Seliverstov Yu.A., Kaznacheeva E.V. Molecular pathogenesis in Huntington’s disease. Biokhimiya. 2018; 83(9): 1299-310. DOI: http://doi.org/10.1134/S032097251809004X (in Russian)
  27. Tabrizi S.J., Ghosh R., Leavitt B.R. Huntingtin lowering strategies for disease modification in Huntington’s disease. Neuron. 2019; 102(4): 899. DOI: http://doi.org/10.1016/j.neuron.2019.05.001
  28. La Rosa P., Petrillo S., Bertini E.S., Piemonte F. Oxidative stress in DNA repeat expansion disorders: a focus on NRF2 signaling involvement. Biomolecules. 2020; 10(5): 702. DOI: http://doi.org/10.3390/biom10050702
  29. Palpagama T.H., Waldvogel H.J., Faull R.L.M., Kwakowsky A. The role of microglia and astrocytes in Huntington’s disease. Front. Mol. Neurosci. 2019; 12: 258. DOI: http://doi.org/10.3389/fnmol.2019.00258
  30. Pavese N., Gerhard A., Tai Y.F., Ho A.K., Turkheimer F., Barker R.A., et al. Microglial activation correlates with severity in Huntington disease: a clinical and PET study. Neurology. 2006; 66(11): 1638-43. DOI: http://doi.org/10.1212/01.wnl.0000222734.56412.17
  31. Crotti A., Glass C.K. The choreography of neuroinflammation in Huntington’s disease. Trends Immunol. 2015; 36(6): 364-73. DOI: http://doi.org/10.1016/j.it.2015.04.007
  32. Stanga S., Caretto A., Boido M., Vercelli A. Mitochondrial dysfunctions: a red thread across neurodegenerative diseases. Int. J. Mol. Sci. 2020; 21(10): E3719. DOI: http://doi.org/10.3390/ijms21103719
  33. Zhang Q., Lei Y.H., Zhou J.P., Hou Y.Y., Wan Z., Wang H.L., et al. Role of PGC-1α in mitochondrial quality control in neurodegenerative diseases. Neurochem. Res. 2019; 44(9): 2031‐43. DOI: http://doi.org/10.1007/s11064-019-02858-6
  34. Hickey M.A., Chesselet M.F. Apoptosis in Huntington’s disease. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2003; 27(2): 255‐65. DOI: http://doi.org/10.1016/S0278-5846(03)00021-6
  35. Areal L.B., Pereira L.P., Ribeiro F.M., Olmo I.G., Muniz M.R., do Carmo Rodrigues M., et al. Role of dynein axonemal heavy chain 6 gene expression as a possible biomarker for Huntington’s disease: a translational study. J. Mol. Neurosci. 2017; 63(3-4): 342‐48. DOI: http://doi.org/10.1007/s12031-017-0984-z
  36. Metzger S., Rong J., Nguyen H.P., Cape A., Tomiuk J., Soehn A.S., et al. Huntingtin-associated protein-1 is a modifier of the age-at-onset of Huntington’s disease. Hum. Mol. Genet. 2008; 17(8): 1137‐46. DOI: http://doi.org/10.1093/hmg/ddn003
  37. Couly S., Paucard A., Bonneaud N., Maurice T., Benigno L., Jourdan C., et al. Improvement of BDNF signalling by P42 peptide in Huntington’s disease. Hum. Mol. Genet. 2018; 27(17): 3012‐28. DOI: http://doi.org/10.1093/hmg/ddy207
  38. Quarrell O.W., Nance M.A., Nopoulos P., Paulsen J.S., Smith J.A., Squitieri F. Managing juvenile Huntington’s disease. Neurodegener. Dis. Manag. 2013; 3(3). DOI: http://doi.org/10.2217/nmt.13.18
  39. Peltsch A., Hoffman A., Armstrong I., Pari G., Munoz D.P. Saccadic impairments in Huntington’s disease. Exp. Brain Res. 2008; 186(3): 457-69. DOI: http://doi.org/10.1007/s00221-007-1248-x
  40. Klyushnikov S.A., Yudina E.N., Illarioshkin S.N., Ivanova-Smolenskaya I.A. Mental disorders in Huntington’s disease. Nevrologiya, neyropsikhiatriya, psikhosomatika. 2012; 4(2S): 46-51. DOI: http://doi.org/10.14412/2074-2711-2012-2508 (in Russian)
  41. Goh A.M., Wibawa P., Loi S.M., Walterfang M., Velakoulis D., Looi J.C. Huntington’s disease: neuropsychiatric manifestations of Huntington’s disease. Australas Psychiatry. 2018; 26(4): 366‐75. DOI: http://doi.org/10.1177/1039856218791036
  42. Brandt J., Folstein S.E., Folstein M.F. Differential cognitive impairment in Alzheimer’s disease and Huntington’s disease. Ann. Neurol. 1988; 23(6): 555-61. DOI: http://doi.org/10.1002/ana.410230605
  43. Klyushnikov S.A. Diagnosis of Huntington’s chorea at the preclinical stage and in atypical variants of the disease (clinical and molecular genetic comparisons): Diss. Moscow; 1998. (in Russian)
  44. Paulsen J.S., Miller A.C., Hayes T., Shaw E. Cognitive and behavioral changes in Huntington disease before diagnosis. Handb. Clin. Neurol. 2017; 144: 69‐91. DOI: http://doi.org/10.1016/B978-0-12-801893-4.00006-7
  45. Rosenblatt A. Neuropsychiatry of Huntington’s disease. Dialogues Clin. Neurosci. 2007; 9(2): 191-7.
  46. Zarotti N., Simpson J., Fletcher I., Squitieri F., Migliore S. Exploring emotion regulation and emotion recognition in people with pre¬symptomatic Huntington’s disease: The role of emotional awareness. Neuropsychologia. 2018; 112: 1‐9. DOI: http://doi.org/10.1016/j.neuropsychologia.2018.02.030
  47. Oosterloo M., Craufurd D., Nijsten H., van Duijn E. Obsessive-compulsive and perseverative behaviors in Huntington’s disease. J. Huntingtons Dis. 2019; 8(1): 1‐7. DOI: http://doi.org/10.3233/JHD-180335
  48. Aziz N.A., Pijl H., Frölich M., Schröder-van der Elst J.P., van der Bent C., Roelfsema F., et al. Growth hormone and ghrelin secretion are associated with clinical severity in Huntington’s disease. Eur. J. Neurol. 2010; 17(2): 280-8. DOI: http://doi.org/10.1111/j.1468-1331.2009.02798.x
  49. van der Burg J.M., Björkqvist M., Brundin P. Beyond the brain: widespread pathology in Huntington’s disease. Lancet Neurol. 2009; 8(8): 765-74. DOI: http://doi.org/10.1016/S1474-4422(09)70178-4
  50. Unified Huntington’s disease rating scale: reliability and consistency. Huntington Study Group. Mov. Disord. 1996; 11(2): 136‐42. DOI: http://doi.org/10.1002/mds.870110204
  51. Penney J.B. Jr., Vonsattel J.P., MacDonald M.E., Gusella J.F., Myers R.H. CAG repeat number governs the development rate of pathology in Huntington’s disease. Ann. Neurol. 1997; 41(5): 689-92. DOI: http://doi.org/10.1002/ana.410410521
  52. Yudina E.N., Konovalov R.N., Abramycheva N.Yu., Klyushnikov S.A., Illarioshkin S.N. Experience of using MRI morphometry in Huntington’s disease. Annaly klinicheskoy i eksperimental’noy nevrologii. 2013; 7(4): 16-9. (in Russian)
  53. Yudina E.N. Morphofunctional brain changes in Huntington’s disease: Diss. Moscow; 2014. (in Russian)
  54. Seliverstova E.V., Seliverstov Yu.A., Konovalov R.N., Illarioshkin S.N. Resting-state fMRI: new possibilities for studying physiology and pathology of the brain. Annaly klinicheskoy i eksperimental’noy nevrologii. 2013; 7(4): 39-44. (in Russian)
  55. Seliverstov Yu.A. Clinical and neuroimaging analysis of functional changes in the brain in Huntington’s disease: Diss. Moscow; 2015. (in Russian)
  56. La Spada A.R., Weydt P., Pineda V.V. Huntington’s disease pathogenesis: mechanisms and pathways. In: Lo D.C., Hughes R.E., eds. Neurobiology of Huntington’s disease: applications to drug discovery. Chapter 2. Boca Raton, FL: CRC Press/Taylor & Francis; 2011.
  57. Banati R.B. Visualising microglial activation in vivo. Glia. 2002; 40(2): 206-17. DOI: http://doi.org/10.1002/glia.10144
  58. Wilson H., De Micco R., Niccolini F., Politis M. Molecular imaging markers to track Huntington’s disease pathology. Front. Neurol. 2017; 8: 11. DOI: http://doi.org/10.1002/glia.10144
  59. Ponomareva N., Klyushnikov S., Abramycheva N., Malina D., Scheglova N., Fokin V., et al. Alpha-theta border EEG abnormalities in preclinical Huntington’s disease. J. Neurol. Sci. 2014; 344(1-2): 114-20. DOI: http://doi.org/10.1016/j.jns.2014.06.035
  60. Constantinescu R., Romer M., Oakes D., Rosengren L., Kieburtz K. Levels of the light subunit of neurofilament triplet protein in cerebrospinal fluid in Huntington’s disease. Parkinsonism Relat. Disord. 2009; 15(3): 245-8. DOI: http://doi.org/10.1016/j.parkreldis.2008.05.012
  61. Byrne L.M., Rodrigues F.B., Johnson E.B., Wijeratne P.A., De Vita E., Alexander D.C., et al. Evaluation of mutant huntingtin and neurofilament proteins as potential markers in Huntington’s disease. Sci. Transl. Med. 2018; 10(458): eaat7108. DOI: http://doi.org/10.1126/scitranslmed.aat7108
  62. Wild E.J., Tabrizi S.J. Huntington’s disease phenocopy syndromes. Curr. Opin. Neurol. 2007; 20(6): 681-7. DOI: http://doi.org/10.1097/WCO.0b013e3282f12074
  63. Schneider S.A., Bird T. Huntington’s disease, Huntington’s disease look-alikes, and benign hereditary chorea: what’s new? Mov. Disord. Clin. Pract. 2016; 3(4): 342-54. DOI: http://doi.org/10.1002/mdc3.12312
  64. Seliverstov Yu.A., Klyushnikov S.A. Differential diagnosis of chorea. Nervnye bolezni. 2015; (1): 6-15. (in Russian)
  65. Klyushnikov S.A., Ivanova-Smolenskaya I.A., Nikol’skaya N.N., Illarioshkin S.N., Markova E.D., Bodareva E.A. Ethical issues of genetic counseling using Huntington’s chorea. Rossiyskiy meditsinskiy zhurnal. 2000; (2): 32-6. (in Russian)
  66. Poon L.H., Kang G.A., Lee A.J. Role of tetrabenazine for Huntington’s disease-associated chorea. Ann. Pharmacother. 2010; 44(6): 1080‐9. DOI: http://doi.org/10.1345/aph.1M582
  67. Dean M., Sung V.W. Review of deutetrabenazine: a novel treatment for chorea associated with Huntington’s disease. Drug Des. Devel. Ther. 2018; 12: 313-9. DOI: http://doi.org/10.2147/DDDT.S138828
  68. Wyant K.J., Ridder A.J., Dayalu P. Huntington’s disease-update on treatments. Curr. Neurol. Neurosci. Rep. 2017; 17(4): 33. DOI: http://doi.org/10.1007/s11910-017-0739-9
  69. Brusa L., Orlacchio A., Moschella V., Iani C., Bernardi G., Mercuri N.B. Treatment of the symptoms of Huntington’s disease: preliminary results comparing aripiprazole and tetrabenazine. Mov. Disord. 2009; 24(1): 126-9. DOI: http://doi.org/10.1002/mds.22376
  70. Seliverstov Y., Borzov A., Niyazov R., Belyaev M., Illarioshkin S. Tetrabenazine and olanzapine in management of Huntington disease: comparative retrospective analysis of data from the worldwide observational study Enroll-HD (P2.008). Neurology. 2017; 88(16 Suppl.).
  71. Deroover J., Baro F., Bourguignon R.P., Smets P. Tiapride versus placebo: a double-blind comparative study in the management of Huntington’s chorea. Curr. Med. Res. Opin. 1984; 9(5): 329-38. DOI: http://doi.org/10.1185/03007998409109601
  72. Seliverstov Yu.A., Klyushnikov S.A. Modern approaches to medical correction of chorea in Huntington’s disease. Nervnye bolezni. 2014; (3): 24-8. (in Russian)
  73. Klyushnikov S.A., Illarioshkin S.N., Seliverstov Yu.A. Amantadine in Huntington’s disease: pros and cons. Nervnye bolezni. 2019; (2): 25-30. DOI: http://doi.org/10.24411/2226-0757-2019-12101 (in Russian)
  74. Zittel S., Tadic V., Moll C.K.E., Bäumer T., Fellbrich A., Gulberti A., et al. Prospective evaluation of Globus pallidus internus deep brain stimulation in Huntington’s disease. Parkinsonism Relat. Disord. 2018; 51: 96‐100. DOI: http://doi.org/10.1016/j.parkreldis.2018.02.030
  75. Jabłońska M., Grzelakowska K., Wiśniewski B., Mazur E., Leis K., Gałązka P. Pridopidine in the treatment of Huntington’s disease. Rev. Neurosci. 2020; 31(4): 441‐51. DOI: http://doi.org/10.1515/revneuro-2019-0085
  76. Koch J., Shi W.X., Dashtipour K. VMAT2 inhibitors for the treatment of hyperkinetic movement disorders. Pharmacol. Ther. 2020; 212: 107580. DOI: http://doi.org/10.1016/j.pharmthera.2020.107580
  77. Zeitler B., Froelich S., Marlen K., Shivak D.A., Yu Q., Li D., et al. Allele-selective transcriptional repression of mutant HTT for the treatment of Huntington’s disease. Nat. Med. 2019; 25(7): 1131‐42. DOI: http://doi.org/10.1038/s41591-019-0478-3
  78. Nekrasov E.D., Lebedeva O.S., Vasina E.M., Bogomazova A.N., Chestkov I.V., Kiselev S.L., et al. A platform for studies of Huntington’s disease on the basis of induced pluripotent stem cells. Annaly klinicheskoy i eksperimental’noy nevrologii. 2012; (4): 30-5. (in Russian)
  79. Nekrasov E.D., Vigont V.A., Klyushnikov S.A., Lebedeva O.S., Vassina E.M., Bogomazova A.N., et al. Manifestation of Huntington’s disease pathology in human induced pluripotent stem cell-derived neurons. Mol. Neurodegener. 2016; 11: 27. DOI: http://doi.org/10.1186/s13024-016-0092-5
  80. Wu J., Tang Y., Zhang C.L. Targeting N-terminal Huntingtin with a dual-sgRNA strategy by CRISPR/Cas9. Biomed. Res. Int. 2019; 2019: 1039623. DOI: http://doi.org/10.1155/2019/1039623
  81. Marxreiter F., Stemick J., Kohl Z. Huntingtin lowering strategies. Int. J. Mol. Sci. 2020; 21(6): 2146. DOI: http://doi.org/10.3390/ijms21062146
  82. Tabrizi S.J., Leavitt B.R., Landwehrmeyer G.B., Wild E.J., Saft C., Barker R.A., et al. Targeting Huntingtin expression in patients with Huntington’s disease. N. Engl. J. Med. 2019; 380(24): 2307‐16. DOI: http://doi.org/10.1056/NEJMoa1900907
  83. Ionis Pharmaceuticals, Inc. Tominersen. Available at: http://www.ionispharma.com/medicines/ionis-htt/

Statistics

Views

Abstract - 107

PDF (Russian) - 1

Cited-By


Article Metrics

Metrics Loading ...

PlumX

Dimensions

Refbacks

  • There are currently no refbacks.

Copyright (c) 2020 Klyushnikov S.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies