Development of an applied variant of the kolmogorov–johnson–mehl theory of crystallization for processing thermal analysis data. Temperatures and enthalpies of melting germanium isotopes

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

An applied kinetic model has been developed for processing DSC peaks of transitions between states, determining the temperature–time dependence of the degree of transition and combining the fundamental theory of Kolmogorov–Johnson–Mehl crystallization, simplified for practice, with the semi-empirical Erofeev model. In the development of this applied model, the concept of a “thermodynamic factor” is introduced, which allows a transition in the kinetics of phase transformations of condensed matter. The application of the new approach is demonstrated by the example of studying the dependences of temperature and enthalpy of fusion on the average atomic mass of stable germanium isotopes, data on which, as new chemical individuals, are of a fundamental nature and can serve as reference information.

全文:

受限制的访问

作者简介

A. Kutin

G. G. Devyatykh Institute of Chemistry of High-Purity Substances, Russian Academy of Sciences

Email: plekhovich@ihps-nnov.ru
俄罗斯联邦, 603951 Nizhny Novgorod

A. Plekhovich

G. G. Devyatykh Institute of Chemistry of High-Purity Substances, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: plekhovich@ihps-nnov.ru
俄罗斯联邦, 603951 Nizhny Novgorod

V. Gavva

G. G. Devyatykh Institute of Chemistry of High-Purity Substances, Russian Academy of Sciences

Email: plekhovich@ihps-nnov.ru

Corresponding Member of the RAS

俄罗斯联邦, 603951 Nizhny Novgorod

A. Bulanov

G. G. Devyatykh Institute of Chemistry of High-Purity Substances, Russian Academy of Sciences

Email: plekhovich@ihps-nnov.ru
俄罗斯联邦, 603951 Nizhny Novgorod

参考

  1. Gabbott P.L. Principles and Applications of Thermal Analysis. 1st edn. Blackwell Publishing Ltd., 2008. P. 484. https://doi.org/10.1002/9780470697702
  2. Jackson K.A. Kinetic processes crystal growth, diffusion, and phase transitions in materials. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2004. p. 426.
  3. Хеммингер В., Хене Г. Калориметрия. Теория и практика. Пер. с англ. М.: Химия, 1990. с. 176.
  4. Borchard H.J., Daniels F. // J. Am. Chem. Soc. 1957. V. 79. P. 41–46 https://doi.org/10.1021/ja01558a009
  5. Колмогоров А.Н. // Изв. АН СССР. Сер. матем. Т. 1937. № 3. С. 355—359.
  6. Johnson W.A., Mehl R.F. // Trans. AIME. 1939. V. 135. P. 416–442.
  7. Беленький В.З. Геометрико-вероятностные модели кристаллизации. М.: Наука, 1980. с. 88.
  8. Sestaik J., Berggren G. // Thermochim. Acta. 1971. V. 3. Р. 1–12. https://doi.org/10.1016/0040-6031(71)85051-7
  9. Янг Д. Кинетика разложения твердых веществ. Пер. с англ. М.: Мир, 1969. с. 263.
  10. Лифшиц Е.М., Питаевский Л.П. Физическая кинетика, М.: Физматлит, 2001. Т. 10. с. 536.
  11. Kut’in A.M., Plekhovich A.D., Balueva K.V., Sukhanov M.V., Evdokimov I.I. // J. Non-Cryst. Solids. 2022. V. 582. 121440. https://doi.org/10.1016/j.jnoncrysol.2022.121440
  12. Кутьин А.М., Плехович А.Д., Суханов М.В., Балуева К.В. // Неорг. матер. 2019. Т. 55. № 10. С. 1101–1107. https://doi.org/10.1134/S0020168519080053
  13. Кутьин А.М., Плехович А.Д., Дорофеев В.В. // Неорг. матер. 2016. Т. 52. № 6. С. 656–663. https://doi.org/10.7868/S0002337X16060063
  14. Франк-Каменецкий Д.А. Диффузия и теплопередача в химической кинетике. М.: Наука, 1987. с. 502.
  15. Кубо Р. Термодинамика. Пер. с англ. М: Мир, 1970. С. 264.
  16. Berglund M., Wieser M.E. // Pure Appl. Chem. 2011. V. 83. № 2. P. 397–410. http://dx.doi.org/10.1351/PAC-REP-10-06-02
  17. Churbanov M.F., Gavva V.A., Bulanov A.D., Abrosimov N.V., Kozyrev E.A., Andryushchenko I.A., Lipskii V.A., Adamchik S.A., Troshin O.Yu., Lashkov A.Yu., Gusev A.V. // Cryst. Res. Technol. 2017. V. 52. № 4. P. 1700026. https://doi.org/10.1002/crat.201700026
  18. Gavva V.A., Bulanov A.D., Kut’in A.M., Plekhovich A.D., Churbanov M.F. // Phys. B Cond. Matter. 2018. V. 537. P. 12–14. https://doi.org/10.1016/j.physb.2018.01.056

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Melting peaks of germanium isotopes. The symbols denote the experimental DSC values: ⁷⁶Ge – line, ⁷⁴Ge – square, ⁷²Ge – cross, ⁷⁰Ge – triangle (a); ⁷³Ge – rhombus, ⁿᵃᵗGe – circle (b); solid lines (color corresponding to the symbols) are the result of processing the experimental DSC values ​​according to equations (2), (13), (15), (16), (16ʹ) by the least squares method with the parameters found from Table 1; α are dashed lines.

下载 (258KB)
3. Fig. 2. Dependence of the melting point of ⁿᵃᵗGe and its isotopes on the atomic mass M (circles with the corresponding trend line and its equation). The measurement data from [18] are indicated by crosses. The error intervals of the experimental temperature measurement, established by the shift of the peaks during triple thermal cycling (0.14 K), are plotted against the values ​​calculated using the FP model Tₜᵣ.

下载 (30KB)
4. Fig. 3. Enthalpies (ΔₜᵣH) and dimensionless entropies of melting ΔₜᵣS = ΔₜᵣH/RTₜᵣ, calculated using the FP model depending on the atomic mass of M ⁿᵃᵗGe and its isotopes.

下载 (21KB)

版权所有 © Russian Academy of Sciences, 2024