STEARIN AS A STARTING MATERIAL FOR THE SYNTHESIS OF BIOLOGICALLY ACTIVE IONIC LIQUIDS
- Authors: Seitkalieva M.M.1, Vavina A.V.1, Strukova E.N.2
-
Affiliations:
- N.D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences
- Gause Institute of New Antibiotics, Russian Academy of Sciences
- Issue: Vol 513, No 1 (2023)
- Pages: 67-76
- Section: CHEMISTRY
- URL: https://journals.eco-vector.com/2686-9535/article/view/651933
- DOI: https://doi.org/10.31857/S2686953523600113
- EDN: https://elibrary.ru/BJLCVA
- ID: 651933
Cite item
Abstract
For the first time, the possibility of using widely available stearin for the production of fatty acid-derived ionic liquids (ILs) has been shown. New amphiphilic ILs based on imidazolium, pyridinium, and quaternary ammonium cations containing long-chain alkyl substituents were obtained. The synthesized compounds are shown to have biological activity comparable to known antimicrobial compounds. ILs with one alkyl substituent have higher cytotoxicity and antimicrobial activity compared to disubstituted derivatives.
Keywords
About the authors
M. M. Seitkalieva
N.D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences
Author for correspondence.
Email: s_marina@ioc.ac.ru
Russian Federation, 119991, Moscow
A. V. Vavina
N.D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences
Email: s_marina@ioc.ac.ru
Russian Federation, 119991, Moscow
E. N. Strukova
Gause Institute of New Antibiotics, Russian Academy of Sciences
Email: s_marina@ioc.ac.ru
Russian Federation, 119021, Moscow
References
- Welton T. // Biophys. Rev. 2018. V. 10. № 3. P. 691–706. https://doi.org/10.1007/s12551-018-0419-2
- Koroleva M.Yu., Yurtov E.V. // Russ. Chem. Rev. 2022. V. 91. № 5. P. RCR5024. https://doi.org/10.1070/rcr5024
- Arzhakova O.V., Arzhakov M.S., Badamshina E.R., Bryuzgina E.B., Bryuzgin E.V., Bystrova A.V., Vaganov G.V., Vasilevskaya V.V., Vdovichenko A.Yu., Gallyamov M.O., Gumerov R.A., Didenko A.L., Zefirov V.V., Karpov S.V., Komarov P.V., Kulichikhin V.G., Kurochkin S.A., Larin S.V., Malkin A.Ya., Milenin S.A., Muzafarov A.M., Molcha-nov V.S., Navrotskiy A.V., Novakov I.A., Panarin E.F., Panova I.G., Potemkin I.I., Svetlichny V.M., Sedush N.G., Serenko O.A., Uspenskii S.A., Philippova O.E., Khokh-lov A.R., Chvalun S.N., Sheiko S.S., Shibaev A.V., Elmanovich I.V., Yudin V.E., Yakimansky A.V., Yarosla-vov A.A. // Russ. Chem. Rev. 2022. V. 91. № 12. RCR5062. https://doi.org/10.57634/RCR5062
- Antipin I.S., Alfimov M.V., Arslanov V.V., Burilov V.A., Vatsadze S.Z., Voloshin Ya.Z., Volcho K.P., Gorbatchuk V.V., Gorbunova Yu.G., Gromov S.P., Dudkin S.V., Zaitsev S.Yu., Zakharova L.Ya., Ziganshin M.A., Zolotukhina A.V., Kalinina M.A., Karakhanov E.A., Kashapov R.R., Koifman O.I., Konovalov A.I., Korenev V.S., Maksi-mov A.L., Mamardashvili N.Zh., Mamardashvili G.M., Martynov A.G., Mustafina A.R., Nugmanov R.I., Ovsyannikov A.S., Padnya P.L., Potapov A.S., Selek-tor S.L., Sokolov M.N., Solovieva S.E., Stoikov I.I., Stuzhin P.A., Suslov E.V., Ushakov E.N., Fedin V.P., Fedorenko S.V., Fedorova O.A., Fedorov Yu.V., Chvalun S.N., Tsivadze A.Yu., Shtykov S.N., Shurpik D.N., Shcherbi-na M.A., Yakimova L.S. // Russ. Chem. Rev. 2021. V. 90. № 8. P. 895–1107. https://doi.org/10.1070/RCR5011
- Azov V.A., Egorova K.S., Seitkalieva M.M., Kashin A.S., Ananikov V.P. // Chem. Soc. Rev. 2018. V. 47. № 4. P. 1250–1284. https://doi.org/10.1039/c7cs00547d
- Ohno H., Yoshizawa-Fujita M., Kohno Y. // Bull. Chem. Soc. Jpn. 2019. V. 92. № 4. P. 852–868. https://doi.org/10.1246/bcsj.20180401
- Wang H., Gurau G., Rogers R.D. // Chem. Soc. Rev. 2012. V. 41. № 4. P. 1519–1537. https://doi.org/10.1039/c2cs15311d
- Welton T. // Coord. Chem. Rev. 2004. V. 248. № 21–24. P. 2459–2477. https://doi.org/10.1016/j.ccr.2004.04.015
- MacFarlane D.R., Tachikawa N., Forsyth M., Pringle J.M., Howlett P.C., Elliott G.D., Davis J.H., Watanabe M., Simon P., Angell C.A. // Energy Environ. Sci. 2014. V. 7. № 1. P. 232–250. https://doi.org/10.1039/c3ee42099j
- Antuganov D.O., Nadporojskii M.A., Kondratenko Yu.A. // Mendeleev Commun. 2022. V. 32. № 3. P. 408–410. https://doi.org/10.1016/j.mencom.2022.05.040
- Krasovskiy V.G., Gorbatsevich O.B., Talalaeva E.V., Glukhov L.M., Chernikova E.A., Kustov L.M. // Mendeleev Commun. 2022. V. 32. № 4. P. 551–553. https://doi.org/10.1016/j.mencom.2022.07.039
- Marrucho I.M., Branco L.C., Rebelo L.P.N. // Annu. Rev. Chem. Biomol. Eng. 2014. V. 5. № 1. P. 527–546. https://doi.org/10.1146/annurev-chembioeng-060713-040024
- Egorova K.S., Gordeev E.G., Ananikov V.P. // Chem. Rev. 2017. V. 117. № 10. P. 7132–7189. https://doi.org/10.1021/acs.chemrev.6b00562
- Simoes M., Pereira A.R., Simoes L.C., Cagide F., Bor-ges F. // Drug Discov. Today. 2021. V. 26. № 6. P. 1340–1346. https://doi.org/10.1016/j.drudis.2021.01.031
- Vereshchagin A.N., Frolov N.A., Egorova K.S., Seitkalieva M.M., Ananikov V.P. // Int. J. Mol. Sci. 2021. V. 22. № 13. P. 6793. https://doi.org/10.3390/ijms22136793
- Ali M.K., Moshikur R.M., Wakabayashi R., Tahara Y., Moniruzzaman M., Kamiya N., Goto M. // J. Colloid. Interface Sci. 2019. V. 551. P. 72–80. https://doi.org/10.1016/j.jcis.2019.04.095
- Raj T., Chandrasekhar K., Park J., Varjani S., Sharma P., Kumar D., Yoon J.J., Pandey A., Kim S.H. // Chemosphere. 2022. V. 307. Part 2. P. 135787. https://doi.org/10.1016/j.chemosphere.2022.135787
- Gusain R., Khatri O.P. // RSC Adv. 2016. V. 6. № 5. P. 3462–3469. https://doi.org/10.1039/c5ra25001c
- Oulego P., Faes J., González R., Viesca J.L., Blanco D., Battez A.H. // J. Mol. Liq. 2019. V. 292. P. 111451. https://doi.org/10.1016/j.molliq.2019.111451
- Gundolf T., Weyhing-Zerrer N., Sommer J., Kalb R., Schoder D., Rossmanith P., Mester P. // ACS Sustainable Chem. Eng. 2019. V. 7. № 19. P. 15865–15873. https://doi.org/10.1021/acssuschemeng.8b06201
- Dzhemileva L.U., D’yakonov V.A., Seitkalieva M.M., Kulikovskaya N.S., Egorova K.S., Ananikov V.P. // Green Chem. 2021. V. 23. № 17. P. 6414–6430. https://doi.org/10.1039/d1gc01520f
- Gal N., Malferrari D., Kolusheva S., Galletti P., Tagliavini E., Jelinek R. // Biochim. Biophys. Acta 2012. V. 1818. № 12. P. 2967–2974. https://doi.org/10.1016/j.bbamem.2012.07.025
- Wu S., Zeng L., Wang C., Yang Y., Zhou W., Li F., Tan Z. // J. Hazard. Mater. 2018. V. 348. P. 1–9. https://doi.org/10.1016/j.jhazmat.2018.01.028
- Egorova K.S., Seitkalieva M.M., Kashin A.S., Gordeev E.G., Vavina A.V., Posvyatenko A.V., Ananikov V.P. // J. Mol. Liq. 2022. V. 367. Part A. P. 120450. https://doi.org/10.1016/j.molliq.2022.120450
- Soller F., Roy L.A., Davis D.A. // J. World Aquac. Soc. 2019. V. 50. № 1. P. 186–203. https://doi.org/10.1111/jwas.12571
- Gunstone F.D., Herslöf B.G. Lipid glossary 2. Bridgwater, Oily press, 2000. 262 p.
- Wanasundara U.N., Wanasundara P.K. J.P.D., Shahidi F., Novel Separation Techniques for Isolation and Purification of Fatty Acids and Oil By-Products. In: Bailey’s Industrial Oil and Fat Products. Shahidi F. (Ed.). 7th Edn. John Wiley & Sons, Ltd., 2020. https://doi.org/10.1002/047167849x.bio065.pub2
- Brown J.B., Kolb D.K. // Prog. Chem. Fats Other Lipds. 1955. V. 3. P. 57–94. https://doi.org/10.1016/0079-6832(55)90004-5
- Maddikeri G.L., Pandit A.B., Gogate P.R. // Ind. Eng. Chem. Res. 2012. V. 51. № 19 P. 6869–6876. https://doi.org/10.1021/ie3000562
- Martins P.F., Ito V.M., Batistella C.B., Maciel M.R.W. // Sep. Purif. Technol. 2006. V. 48. № 1. P. 78–84. https://doi.org/10.1016/j.seppur.2005.07.028
- Steinigeweg S., Gmehling J. // Ind. Eng. Chem. Res. 2003. V. 42. № 15. P. 3612–3619. https://doi.org/10.1021/ie020925i
- Ni J., Meunier F.C. // Appl. Catal. A: Gen. 2007. V. 333. № 1. P. 122–130. https://doi.org/10.1016/j.apcata.2007.09.019
- Nakai Y., Moriyama K., Togo H. // Eur. J. Org. Chem. 2016. V. 2016. № 4. P. 768–772. https://doi.org/10.1002/ejoc.201501315
- Frolov N.A., Fedoseeva K.A., Hansford K.A., Vereshchagin A.N. // ChemMedChem. 2021. V. 16. № 19. P. 2954–2959. https://doi.org/10.1002/cmdc.202100284
- Xia X., Wan R., Wang P., Huo W., Dong H., Du Q. // Ecotoxicol. Environ. Saf. 2018. V. 162. P. 408–414. https://doi.org/10.1016/j.ecoenv.2018.07.022
- Arcau J., Andermark V., Rodrigues M., Giannicchi I., Pérez-Garcia L., Ott I., Rodríguez L. // Eur. J. Inorg. Chem. 2014. V. 2014. № 35. P. 6117–6125. https://doi.org/10.1002/ejic.201402819
- Carson L., Chau P.K W., Earle M.J., Gilea M.A., Gil-more B.F., Gorman S.P., McCann M.T., Seddon K.R. // Green Chem. 2009. V. 11. № 4. P. 492–497. https://doi.org/10.1039/b821842k
- Demberelnyamba D., Kim K.S., Choi S., Park S.Y., Lee H., Kim C.J., Yoo I.D. // Bioorg. Med. Chem. 2004. V. 12. № 5. P. 853–857. https://doi.org/10.1016/j.bmc.2004.01.003
- Thorsteinsson T., Masson M., Kristinsson K.G., Hjalmarsdottir M.A., Hilmarsson H., Loftsson T. // J. Med. Chem. 2003. V. 46. № 19. P. 4173–4181. https://doi.org/10.1021/jm030829z
- Cole M.R., Li M., El-Zahab B., Janes M.E., Hayes D., Warner I.M. // Chem. Biol. Drug Des. 2011. V. 78. № 1. P. 33–41. https://doi.org/10.1111/j.1747-0285.2011.01114.x
- Siopa F., Figueiredo T., Frade R.F.M., Neto I., Meirinhos A., Reis C.P., Sobral R.G., Afonso C.A.M., Rijo P. // ChemistrySelect. 2016. V. 1. № 18. P. 5909–5916. https://doi.org/10.1002/slct.201600864
- Łuczak J., Jungnickel C., Łącka I., Stolte S., Hupka J. // Green Chem. 2010. V. 12. № 4 P. 593–601. https://doi.org/10.1039/b921805j
- Vavina A.V., Seitkalieva M.M., Posvyatenko A.V., Gordeev E.G., Strukova E.N., Egorova K.S., Anani-kov V.P. // J. Mol. Liq. 2022. V. 352. P. 118673. https://doi.org/10.1016/j.molliq.2022.118673
- Seitkalieva M.M., Vavina A.V., Posvyatenko A.V., Egorova K.S., Kashin A.S., Gordeev E.G., Strukova E.N., Romashov L.V., Ananikov V.P. // ACS Sustain. Chem. Eng. 2021. V. 9. № 9. P. 3552–3570. https://doi.org/10.1021/acssuschemeng.0c08790
Supplementary files
