WEAKLY SSATURATED SUBGRAPHS OF RANDOM GRAPHS
- Autores: Kalinichenko O.1, Tayfeh-Rezaie B.2, Zhukovskii M.1
- 
							Afiliações: 
							- Moscow Institute of Physics and Technology, Laboratory of Combinatorial and Geometric Structures
- School of Mathematics, Institute for Research in Fundamental Sciences (IPM)
 
- Edição: Volume 509 (2023)
- Páginas: 46-49
- Seção: MATHEMATICS
- URL: https://journals.eco-vector.com/2686-9543/article/view/647870
- DOI: https://doi.org/10.31857/S268695432370008X
- EDN: https://elibrary.ru/CTARUK
- ID: 647870
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
In this paper, we study weak saturation numbers of binomial random graphs. We proved stability of the weak saturation for several pattern graphs, and proved asymptotic stability for all pattern graphs.
Palavras-chave
Sobre autores
O. Kalinichenko
Moscow Institute of Physics and Technology, Laboratory of Combinatorial and Geometric Structures
							Autor responsável pela correspondência
							Email: s15b1_kalinichenko@179.ru
				                					                																			                												                								Russia, Moscow						
B. Tayfeh-Rezaie
School of Mathematics, Institute for Research in Fundamental Sciences (IPM)
							Autor responsável pela correspondência
							Email: tayfeh-r@ipm.ir
				                					                																			                												                								Iran, Tehran						
M. Zhukovskii
Moscow Institute of Physics and Technology, Laboratory of Combinatorial and Geometric Structures
							Autor responsável pela correspondência
							Email: zhukmax@gmail.com
				                					                																			                												                								Russia, Moscow						
Bibliografia
- Alon N. An extremal problem for sets with applications to graph theory // J. Combin. Theory Ser. A. 1985. V. 40. № 1. P. 82–89.
- Bidgoli M.R., Mohammadian A., Tayfeh-Rezaie B., Zhukovskii M. Threshold for weak saturation stability // arXiv:2006.06855. 2020.
- Bollobás B. Weakly k-saturated graphs // Beiträge zur Graphen–theorie. 1968. P. 25–31.
- Kalai G. Hyperconnectivity of graphs // Graphs Combin. 1985 V. 1. P. 65–79.
- Kalinichenko O., Zhukovskii M. Weak saturation stability // arXiv:2107.11138. 2022.
- Korándi D., Sudakov B. Saturation in random graphs // Random Structures Algorithms. 2017. V. 51. № 1. P. 169–181.
- Krivelevich M., Patkós B. Equitable coloring of random graphs // Random Structures Algorithms. 2009. V. 35. № 1. P. 83–99.
- Kronenberg, G., Martins T., Morrison N. Weak saturation numbers of complete bipartite graphs in the clique // J. Combin. Theory Ser. A. 2021. V. 178. 105357.
- Lovász, L. Flats in matroids and geometric graphs // Combinatorial Surveys. 1977. P. 45–86.
- Spencer J. Threshold Functions for Extension Statements // J. Combin. Theory Ser. A. 1990. V. 53. P. 286–305.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 
