The method of the disk friction determining of low mass flow centrifugal pumps

Capa

Citar

Texto integral

Resumo

Low mass flow centrifugal pumps are currently widely used in the energy supply system of liquid rocket engines, the engines of correction, docks, consisting of on-Board power sources on-Board sources power supply system of fuel components in the in gas generator systems for inflating fuel tanks, and in temperature control systems of aircraft and spacecraft.

When designing low mass flow centrifugal pumps for aerospace purposes, methods for calculating and optimizing the flow rate are often used corresponding to the design methods of full-size centrifugal pumps, which limits the mode and design potential of pumps and affects their energy characteristics and reliability. Reliability requirements often lead to the need to reserve units and fuel-supply systems.

Despite the large amount of research works, the issues of reliable design of low mass flow centrifugal pumps with high energy and operational parameters for spacecraft and aircraft remains an urgent task.

The article analyses the operational parameters of low mass flow centrifugal pumps used in aircraft and spacecraft power systems. Taking into account working fluid used and the temperature range, it was found that a laminar rotational flow with Reynolds number characteristic  is realized in the lateral cavity between the impeller and the pump housing.

The determination of power losses on disk friction of the impeller technique is developed taking into account design features and the applied schemes. Equations for determining the disk friction coefficients are consistent with the dependencies obtained by other authors. The obtained equations for the laminar rotational flow made it possible to determine the dependences for the resistance moment and the disk friction power of the impeller determining of a low mass flow centrifugal pump.

Sobre autores

Alexander Zuev

Reshetnev Siberian State University of Science and Technologies

Autor responsável pela correspondência
Email: dla2011@inbox.ru

Cand. Sc., associate Professor, Department of Aircraft Engines

Rússia, 31, Krasnoyarsky Rabochy Av., Krasnoyarsk, 660037

Vladimir Nazarov

Cand. Sc., Professor, Department of Aircraft Engines, Reshetnev Siberian State University of Science and Technologies

Email: nazarov@mail.sibsau.ru

Cand. Sc., Professor, Department of Aircraft Engines

Rússia, 31, Krasnoyarsky Rabochy Av., Krasnoyarsk, 660037

Anna Arngold

Krasnoyarsk Machine-Building Plant

Email: arngoldanna@mail.ru

Department of Special Connectors and Instruments

Rússia, 29, Krasnoyarsky Rabochy Av., Krasnoyarsk, 660123

Ivan Petrov

Krasnoyarsk Machine-Building Plant

Email: petroof777@mail.ru

Deputy chief designer for engines, propulsion systems and power plants

Rússia, 29, Krasnoyarsky Rabochy Av., Krasnoyarsk, 660123

Bibliografia

  1. Valentini, D., Pace, G., Pasini, A., Torre, L., Hadavandi, R., & d’ Agostino, L. (2017). Fluid-induced rotordynamic forces on a whirling centrifugal pump. European Journal of Mechanics – B/Fluids, 61, Р. 336–345. doi: 10.1016/j.euromechflu.2016.09.004.
  2. Liu, M., Tan, L., & Cao, S. (2019). Theoretical model of energy performance prediction and BEP determination for centrifugal pump as turbine. Energy. doi: 10.1016/j.energy.2019.01.162.
  3. Sengpanich, K., Bohez, E. L. J., Thongkruer, P., & Sakulphan, K. (2019). New mode to operate centrifugal pump as impulse turbine. Renewable Energy. doi: 10.1016/j.renene.2019.03.116.
  4. Ding, H., Li, Z., Gong, X., & Li, M. (2018). The influence of blade outlet angle on the performance of centrifugal pump with high specific speed. Vacuum. doi: 10.1016/j.vacuum.2018.10.049.
  5. Skrzypacz, J., & Bieganowski, M. (2018). The influence of micro grooves on the parameters of the centrifugal pump impeller. International Journal of Mechanical Sciences, 144, Р. 827–835. doi: 10.1016/j.ijmecsci.2017.01.039.
  6. Zhang, N., Liu, X., Gao, B., Wang, X., & Xia, B. (2019). Effects of modifying the blade trailing edge profile on unsteady pressure pulsations and flow structures in a centrifugal pump. International Journal of Heat and Fluid Flow, 75, Р. 227–238. doi: 10.1016/j.ijheatfluidflow.2019.01.009.
  7. Chen, H., He, J., & Liu, C. (2017). Design and experiment of the centrifugal pump impellers with twisted inlet vice blades. Journal of Hydrodynamics, Ser. B, 29(6), Р. 1085–1088. doi: 10.1016/s1001-6058(16)60822-3.
  8. Yu, R., & Liu, J. (2018). Failure analysis of centrifugal pump impeller. Engineering Failure Analysis, 92, Р. 343–349. doi: 10.1016/j.engfailanal.2018.06.003.
  9. Salehi, S., Raisee, M., J. Cervantes, M., & Nourbakhsh, A. (2018). On the flow field and performance of a centrifugal pump under operational and geometrical uncertainties. Applied Mathematical Modelling, 61, Р. 540–560. doi: 10.1016/j.apm.2018.05.008.
  10. Bobkov A. V. [The influence of the factor malorazmernyj to the design of the supercharger centrifugal type]. Uspekhi sovremennoy nauki. 2017. Vol. 4. No. 2. P. 127–130 (In Russ.).
  11. Bobkov A. V. [A geometric criterion of optimizing the design of blade machines]. Mezhdunarodnyy zhurnal prikladnykh i fundamentalnykh issledovaniy. 2013. No. 6. P. 49 (In Russ.).
  12. Bobkov A. V. [Energy expediency of increasing the number of stages in a small centrifugal electric pump unit]. Sovremennyye problemy nauki i obrazovaniya. 2012. No. 4. P. 84 (In Russ.).
  13. Bobkov A. V., Tsvetkov E. O. [Improving the pressure qualities of the centrifugal pump thermal control system]. Mezhdunarodnyy zhurnal prikladnykh i fundamentalnykh issledovaniy. 2012. No. 10. P. 110 (In Russ.).
  14. Bobkov A. V., Tsvetkov E. O. [Features of balance of power losses in electric pump units of spacecraft thermal control systems]. Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk. 2011. Vol. 13. No. 1–2. С. 290–292 (In Russ.).
  15. Dvirnyy V. V., Krushenko G. G., Golovanova V. V., Dvirnyy G. V., Petyayeva N. N., Kirianova K. A. [Improvement of units for heat transportation in spacecraft]. Issledovaniya naukograda. 2016. No. 3–4 (18). P. 12–16 (In Russ.).
  16. Dvirnyy V. V., Dvirnyy G. V., Khnykin A. V., Golovanova V. V., Krushenko G. G. [Providing long lasting resource of economical compressors]. Issledovaniya naukograda. 2014. No. 3 (9). P. 12–20 (In Russ.).
  17. Krayeva E. M. [Energy parameters of high-speed low-flow pumps]. Vestnik Moskovskogo aviatsionnogo instituta. 2011. Vol. 18. No. 3. P. 104 (In Russ.).
  18. Krayeva E. M. [Calculation of energy parameters of high-speed centrifugal pumps of low speed]. Izvestiya vysshikh uchebnykh zavedeniy. Aviatsionnaya tekhnika. 2010. No. 1. P. 48–50 (In Russ.).
  19. Krayeva E. M. [To calculation of operating parameters of centrifugal pumps of low speed]. Vestnik SibCAU. 2009. No. 2 (23). P. 168–170 (In Russ.).
  20. Bobkov A. V., Katalazhnova N. I., Kachalov A. A. [TCalculation of field lines ratio specific speed centrifugal blower spacecraft]. Uspekhi sovremennogo estestvoznaniya. 2004. No. 4. P. 50–51 (In Russ.).
  21. Shlikhting G. Teoriya pogranichnogo sloya [The theory of the boundary layer]. Moscow, Science Publ., 1974. 712 p.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Zuev A.A., Nazarov V.P., Arngold A.A., Petrov I.M., 2019

Creative Commons License
Este artigo é disponível sob a Licença Creative Commons Atribuição 4.0 Internacional.

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies