Optimization the position of the spacecraft instrument panel mounting points based on modal analysis

封面

如何引用文章

详细

The paper presents the optimization of the location of the interface points of the spacecraft instrument panel using modal analysis, as well as a quasi-static calculation of the panel under study, confirming the effectiveness of the proposed changes in the panel design. The instrument panel is a three-layer honeycomb structure consisting of two aluminum plates and a honeycomb filler. Cellular panels have a number of advantages: a small weight of the structure, high rigidity, specific strength. Using finite element modeling, the range of natural frequencies and vibration patterns of the instrument panel was determined, which made it

possible to determine the optimal location of the panel attachment points to the spacecraft body to increase the lower limit of the natural frequency range and increase its carrying capacity.

作者简介

Vadim Kolga

Reshetnev Siberian State University of Science and Technology

编辑信件的主要联系方式.
Email: kolgavv@yandex.ru

Dr. Sc., Cand. Sc., professor, Professor of Department of Aircraft

俄罗斯联邦, 31, Krasnoyarskii rabochii prospekt, Krasnoyarsk, 660037

Andrey Lykum

Reshetnev Siberian State University of Science and Technology

Email: rob4i@mail.ru

fifth-year student

俄罗斯联邦, 31, Krasnoyarskii rabochii prospekt, Krasnoyarsk, 660037

Maxim Marchuk

Reshetnev Siberian State University of Science and Technology

Email: mmarchuk98@mail.ru

fifth-year student

俄罗斯联邦, 31, Krasnoyarskii rabochii prospekt, Krasnoyarsk, 660037

Gleb Filipson

Reshetnev Siberian State University of Science and Technology

Email: gortsev2014@gmail.com

fifth-year student

俄罗斯联邦, 31, Krasnoyarskii rabochii prospekt, Krasnoyarsk, 660037

参考

  1. Daneev A. V., Rusanov M. V., Sizykh V. N. [Conceptual schemes of dynamics and computer modeling of spatial motion of large structures] Sovremennyye tekhnologii. Sistemnyy analiz. Modelirovaniye, 2016, No. 4, P. 17–25 (In Russ.).
  2. Kolga V. V., Yarkov I. S., Yarkova E. A. Development of the heat panel of the small space apparatus for navigation support. Siberian journal of science and technology. 2020, Vol. 21, No. 3, 382– 388. doi: 10.31772/2587-6066-2020-21-3-382-388.
  3. Testoyedov N. A., Kolga V. V., Semenova L. A. Proyektirovaniye i konstruirovaniye ballisticheskikh raket i raket nositeley [Design and construction of ballistic missiles and launch vehicles]. Krasnoyarsk, 2014, 308 p.
  4. Zamyatin D. A., Kolga V. V. [Construction of anisogrid power structure of the spacecraft adapter] Мaterialy XХII Mezhdunar. nauch. konf. “Reshetnevskie chteniya” [Materials XХII Intern. Scientific. Conf “Reshetnev reading”]. Krasnoyarsk, 2019, P. 26–28 (In Russ.).
  5. Vasiliev V. V., Barynin V. A., Rasin A. F., Petrokovskii S. A., Khalimanovich V. I. Anisogrid composite lattice structures – development and space applications. Composites and Nanostructures. 2009, Vol. 3, P. 38–50.
  6. Lopatin A. V., Morozov E. V., Shatov A. V. Axial deformability of the composite lattice cylindrical shell under compressive loading: Application to a load-carrying spacecraft tubular body. Composite Structures. 2016, Vol. 146, P. 201–206.
  7. Gaidachuk V. E., Kirichenko V. V., Kondratyev A. V. [Conceptual approach to the formation of physical and mechanical characteristics of sandwich structures of composite structures of rocket and space technology] Otkrytyye informatsionnyye i komp'yuternyye integrirovannyye tekhnologii. 2014, P. 27–36 (In Russ.).
  8. Rychkov S. P. Modelirovaniye konstruktsiy v srede Femap with NX Nastran [Modeling of structures in the Femap with NX Nastran environment]. Moscow, DMK Press Publ., 2013, 784 p.
  9. Shimkovich D. G. Femap & Nastran. Inzhenernyy analiz metodom konechnykh elemen-tov [Femap & Nastran. Engineering analysis by the finite element method]. Moscow, DMK Press Publ., 2012, 702 p.
  10. MSC Nastran. User’s guide: MSC. – Siemens Product Lifecycle Management Software Corporation; 2014. P. 886. Available at: https://docs.plm.automation.siemens.com/data_services/ resources/nxnastran/10/help/en_US/tdocExt/pdf/User.pdf.
  11. Timoshenko S. P. Kolebaniya v inzhenernom dele [Oscillations in engineering]. Moscow, NAUKA, 1957, 444 p. (In Russ.).
  12. Biderman V. L. Teoriya mekhanicheskikh kolebaniy [Theory of mechanical vibrations]. Moscow, Vysshaya shkola Publ., 1980, 408 p.
  13. Lopatin A. V., Morozov E. V. Fundamental frequency of an orthotropic rectangular plate with an internal centre point support. Composite Structures. 2011, Vol. 93, P. 2487–2495.
  14. Lopatin A. V., Morozov E. V. Fundamental frequency of an orthotropic rectangular plate with an internal centre point support. Composite Structures. 2011, Vol. 93, P. 2487–2495.
  15. Malmeyster A. K., Tamuzh V. P., Teters G. A. Soprotivleniye polimernykh i kompozitnykh materialov [Resistance of polymer and composite materials]. Riga, Zinatne Publ., 1980, 572 p.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Kolga V.V., Lykum A.I., Marchuk M.E., Filipson G.Y., 2021

Creative Commons License
此作品已接受知识共享署名 4.0国际许可协议的许可
##common.cookie##