Optimal control of deployment of the spoke of a transformable reflector in the presence of disturbances

封面

如何引用文章

详细

One of the promising types of spacecrafts is large-size transformable reflectors. Such apparatuses are delivered to a target orbit folded, and then deployed to a working condition. The large aperture allows you to significantly expand the capabilities of the antenna. In this case, the tasks arise of a smooth and reliable deployment, adjusting the shape of a radio-reflecting net, and adjusting the orbital position. Due to the fact that the deployment process takes a long time, accounting for disturbing influences is an important problem. The presence of radiation, large temperature differences, solar wind affects the entire system and mainly on the directional diagram. It is also necessary to smoothly deployment the structural elements, since with an increase in the diameter of the radio-reflecting surface, the moments of inertia of the antenna increase, which leads to prolonged oscillations. In this paper, the process of deployment of the reflector spokes in the presence of disturbances and measurement errors is considered. The solution to the problem is presented using the separation theorem. To estimate the parameters of the system in the presence of measurement noise, the Kalman filter is applied. Its performance is shown at various values of the noise intensity. A random process such as white noise was selected as external disturbances and measurement noises. The control problem is solved using the optimal control algorithm according to the hierarchy of target criteria. The possibility of minimizing energy costs by means of interval switching on of measuring sensors is shown. The results of numerical simulation are presented.

作者简介

Sergey Kabanov

Baltic State Technical University “VOENMEH” named after D. F. Ustinov

编辑信件的主要联系方式.
Email: kaba-sa@mail.ru

Dr. Sc., Professor of the Department of Control Systems and Computer Technologies

俄罗斯联邦, 1/1 Krasnoarmeyskaya St., St. Petersburg, 199005

Dmitriy Kabanov

Baltic State Technical University “VOENMEH” named after D. F. Ustinov

Email: kabanovds@mail.ru

Cand. Sc., researcher, NIL RIUS

俄罗斯联邦, 1/1 Krasnoarmeyskaya St., St. Petersburg, 199005

Evgeny Nikulin

Baltic State Technical University “VOENMEH” named after D. F. Ustinov

Email: nikulin_en@voenmeh.ru

Dr. Sc., Professor, Deputy Director of the Institute of Weapon Systems

俄罗斯联邦, 1/1 Krasnoarmeyskaya St., St. Petersburg, 199005

Fedor Mitin

Baltic State Technical University “VOENMEH” named after D. F. Ustinov

Email: fedor28@list.ru

Cand. Sc., Associate Professor, Department of Control Systems and Computer Technologies

俄罗斯联邦, 1/1 Krasnoarmeyskaya St., St. Petersburg, 199005

参考

  1. Puig L., Barton A., Rando N. A review on large deployable structures for astrophysics missions.Acta Astronautica. 2019, Vol. 67(1), P. 12–26.
  2. Polyanskij I. S., Arhipov N. S., Misyurin S. Y. [On the solution of the problem of optimal control of an adaptive multi-beam reflector antenna]. Avtomat. i telemekh. 2019, No. 1, P. 83–100 (In Russ.).
  3. Vlasov A. Y., Amel’chenko N. A., Pasechnik K. A., Titov M. A., Serzhantova M. V. [Static and modal analysis of the power construction of the precision large-sized antenna reflector from polymer composite materials]. Siberian Journal of Science and Technology. 2017, No. 4, P. 897–901 (In Russ.).
  4. Nie R., He B., Zhang L. Deployment dynamics modeling and analysis for mesh reflector antennas considering the motion feasibility. Nonlinear Dyn. 2018, Vol. 91, P. 549–564.
  5. Thomson M. W. The AstroMesh Deployable Reflector. IUTAM-IASS Symposium on Deployable Structures: Theory and Applications. 2000, P. 435–446.
  6. Li P., Liu C., Tian Q., Hu H., Song Y. Dynamics of a deployable mesh reflector of satellite antenna: form finding and modal analysis. J Comput. Nonlinear Dyn. 2016, Vol. 11(4), P. 549–564.
  7. Reznik S. V., Chubanov D. E. [Large-sized transformable space antenna reflector made оf composite materials dynamic modeling process]. RUDN Journal of Engineering Researches. 2018, Vol. 19(4), P. 411–425 (In Russ.).
  8. Bakulin V. N., Borzyh S. V. [Modeling the dynamics of the process of deployment large-sized transformable space structures]. Izvestiya vysshih uchebnyh zavedenij. Aviacionnaya tekhnika. 2020, No. 4, P. 50–56 (In Russ.).
  9. Berns V. A., Levin V. E., Krasnorutsky D. A., Marinin D. A., Zhukov E. P., Malenkova V. V., Lakiza P. A. [Development of a calculation and experimental method for modal analysis of large transformable space structures]. Spacecrafts & Technologies. 2018, Vol. 2, No. 3, P. 125–133 (In Russ.).
  10. Kabanov S. A., Zimin B. A., Mitin F. V. [Development and Research of Mathematical Models of Deployment of Mobole Parts of Transformable Space Construction. Part I]. Mekhatronika, Avtomatizatsiya, Upravlenie. 2020, Vol. 21, No. 1, P. 51–64 (In Russ.).
  11. Kabanov S. A., Mitin F. V. Optimization of the stages of deploying a large-sized space-based reflector. Acta Astronautica, Special Issue on 6th SFS 2019. 2020, 176, P. 717–724.
  12. Huang H., Cheng Q., Zheng L., Yang Y. Development for petal-type deployable solid-surface reflector by uniaxial rotation mechanism. Acta Astronautica. 2021, No. 178, P. 511–521.
  13. Ishkov V. N. [Solar geoeffective phenomena: Action on the near-earth outer space and the possibility of the forecast]. Slozhnye sistemy. 2012, No. 4 (5), P. 21–41 (In Russ.).
  14. Mihalyaev B. B., Derteev S. B., Lagaev I. Y., Osmonov T. T. [Vliyanie solnechnoj aktivnosti na magnitosferu Zemli]. V sbornike: Aktual’nye problemy sovremennoj fiziki i matematiki. trudy. 2017, P. 92–97 (In Russ.).
  15. Kabanov S. A., Mitin F. V. Optimization of the Processes of Deploymentand Shape Generationfor a Transformable Space-Based Reflector. Journal of Computer and Systems Sciences International. 2021, Vol. 60, No. 2, P. 283–302.
  16. Kabanov S. A., Kabanov D. S. [Deployment the Spoke of a Large-Sized Transformable Refl ector Using a Sequential Optimization Algorithm]. Mekhatronika, Avtomatizatsiya, Upravlenie. 2021, Vol. 22(8), P. 433–441 (In Russ.).
  17. Spravochnik po teorii avtomaticheskogo upravlenija. Pod red. A. A. Krasovskogo [Handbook on the theory of automatic control. Ed. by A. A. Krasovskij]. Moscow, Nauka Publ., 1987, 712 p.
  18. Kabanov S. A. Optimizaciya dinamiki sistem pri dejstvii vozmushchenij [Optimization of the dynamics of systems under the action of disturbances]. Moscow, Fizmatlit Publ., 2008, 200 p.
  19. Kabanov D. S. [Optimal control of a nuclear reactor taking into account random disturbances].Journal of instrument engineering. 2009, No. 5, P. 27–30 (In Russ.).
  20. Mikroprivod [Microdrive]. Available at: http://www.microprivod.ru/catalog/phytron/seriya- vssspase-dlya-rabotyi-v-kosmose,diametr-19-125-mm.html (accessed: 10.10.2021).
  21. Pinter-Plotter.ru [Pinter Plotter.ru]. Available at: https://printer-plotter.ru/3d-oborudovanie/3dscanners/rangevision/?yclid=5975775935832053836 (accessed: 10.10.2021).
  22. SKB IS [SKB IS]. Available at: http://www.skbis.ru/index.php?p=3&c=18&d=128 (accessed: 10.10.2021).
  23. Malyshev V. V., Krasil’shchikov M. N., Karlov V. I. Optimizaciya nablyudeniya i upravleniya letatel’nyh apparatov [Optimization of surveillance and control of aircraft]. Moscow, Mashinostroenie Publ., 1989, 312 p.
  24. Kabanov S. A., Kabanov D. S., Nikulin E. N., Mitin F. V. [Optimal control of deployment of the spoke of a transformable reflector in the presence of disturbance]. Sistemnyj analiz, upravlenie i navigaciya: Tezisy dokladov. Moscow, Izd-vo MAI Publ., 2021, P. 168–169.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Kabanov S.A., Kabanov D.S., Nikulin E.N., Mitin F.V., 2021

Creative Commons License
此作品已接受知识共享署名 4.0国际许可协议的许可
##common.cookie##