Formation of the structure, mechanical and tribological properties of high chrome steel by electronic-ion-plasma nitrogen

封面

如何引用文章

详细

The purpose of this work is to detect the regularities of the formation of the structure, mechanical and tribological properties of high-chromium steel subjected to complex treatment combining irradiation with a pulsed electron beam and subsequent nitriding in a low-pressure gas discharge plasma using a plasma generator with an incandescent cathodePINK”. The object of the study was heat-resistant corrosionresistant austenitic steel grade AISI 310. The relevance and practical significance of the research is due to the relatively low level of hardness and wear resistance of steels of this class, which have a wide range of applications in modern industry, including in the rocket and space industry. Irradiation of AISI 310 steel with a pulsed electron beam was carried out at the SOLO installation, subsequent nitriding (the QUINT installation). It was found that irradiation of samples at an electron beam energy density of 30 J/cm2, 200 microseconds, 3 pulses and subsequent nitriding at a temperature of 793 K for 3 hours led to the following changes in mechanical properties. The maximum microhardness reached values of 19 GPa (exceeds the hardness of steel before modification by 11.2 times and the hardness of steel after electron beam irradiation by 8 times). The wear parameter has changed to values k = 0.7´10-6 mm3/N´m (less than the wear parameter of steel before modification by more than 700 times and less than the wear parameter of steel after electron beam irradiation by more than 750 times). The thickness of the hardened layer is 40 microns. It was found that the samples that have the maximum (90.6 %) content of nitride phases (chromium and iron nitrides) in the surface layer. Shown that after nitriding at a temperature of 723 K in the surface layer of steel, iron and chromium nitrides are formed in the form of nanoscale particles of rounded shape. At nitriding temperatures of 793 K and 873 K, a plate-type structure formed by alternating parallel plates of iron nitride and chromium nitride is formed in the surface layer of steel.

作者简介

Sergei Eresko

Reshetnev Siberian State University of Science and Technology

编辑信件的主要联系方式.
Email: eresko07@mail.ru

Dr. Sc., Professor

俄罗斯联邦, 31, Krasnoyarskii rabochii prospekt, Krasnoyarsk, 660037

Yurii Ivanov

Institute of High Current Electronics SB RA

Email: yufi55@mail.ru

Dr. Sc., Chief Researcher

俄罗斯联邦, 2/3, Academic prospect, Tomsk, 634055

Elizaveta Petrikova

Institute of High Current Electronics SB RAS

Email: eresko07@mail.ru

Junior Researcher

俄罗斯联邦, 2/3, Academic prospect, Tomsk, 634055

Anton Teresov

Institute of High Current Electronics SB RAS

Email: tad514@yandex.ru

Senior Researcher

俄罗斯联邦, 2/3, Academic prospect, Tomsk, 634055

Anatolii Klopotov

Tomsk State University of Architecture and Building

Email: klopotovaa@tsuab.ru

Dr. Sc., Professor

俄罗斯联邦, 2, Solyanaya square, Tomsk, 634002

参考

  1. Arzamasov B. N., Bratuhin A. G., Eliseev Ju. S., Panajoti T. A. Ionnaya himiko-termicheskaya obrabotka splavov [Ionic chemical-thermal treatment of alloys]. Moscow, MGTU Publ., 1999, 400 p.
  2. Berlin E. V., Koval’ N. N., Sejdman L. A. Plazmennaya himiko-termicheskaja obrabotka poverhnosti stal’nyh detaley [Plasma chemical-thermal surface treatment of steel parts]. Moscow, Tehnosfera Publ., 2012, 464 p.
  3. Kovalja N. N., Ivanova Ju. F. Jevolyuciya struktury poverhnostnogo sloja stali, podvergnutoy elektronno-ionno-plazmennym metodam obrabotki [Evolution of the structure of the surface layer of steel subjected to electron-ion-plasma processing methods]. Tomsk, NTL Publ., 2016, 304 p.
  4. Lie Sh., Liang W., Yizuo W., Chunhua W. Plasma nitriding of AISI 304 austenitic stainless steel with pre-shot penning. Surface and Coatings Technology. 2010, Vol. 204, No. 20, P. 3222–3227.
  5. Mirjani M., Shafyei A., Ashrafizadeh F. Plasma and gaseous nitrocarburizing of C60W steel for tribological applications. Vacuum. 2009, Vol. 83, No. 7, P. 1043–1048.
  6. Meletis E. I. Intensified plasma-assisted processing: science and engineering. Surface and Coatings Technology. 2002, Vol. 149, No. 2-3, P. 95–113.
  7. Wei R., Benn C. R., Cooper C. V. High Intensity Plasma Ion Nitriding of AerMet 100 Martensitic Steel. Plasma Process. Polym. 2007, Vol. 4, No. 1, P. 700–706.
  8. Oliveira R. M., Goncalves J. A. N., Ueda M., Rossi J. O., Rizzo P. N. A new high-temperature plasma immersion ion implantation system with electron heating. Surface and Coatings Technology. 2010, Vol. 204, No. 18-19, P. 3009–3012.
  9. Shhanin P. M., Koval’ N. N., Goncharenko I. M., Grigor’ev S. V. [Generation of volumetric plasma by an arc discharge with an incandescent cathode]. Fizika i himiya obrabotki materialov. 2001, No. 3, P. 16–19 (In Russ.).
  10. Gribkov V. A., Grigoriev F. I., Kalin B. A. Perspektivnye radiacionno-puchkovye tehnologii obrabotki materialov [Promising radiation-beam technologies of materials processing]. Moscow, Kruglyy stol Publ., 2001, 528 p.
  11. Nazarov D. S., Ozur G. E., Proskurovsky D. I. Production of Low-Energy, High-Current Electron Beams in a Reflected Discharge Plasma-Anode Gun. Proc. of 11th IEEE Int. Pulsed Power Conference. Baltimore, USA, 1997, Vol. II, P. 1335–1340.
  12. Engelko V., Mueller G., Bluhm H. Influence of particle fluxes from target on characteristics of intense electron beams. Vacuum. 2001, Vol. 62/2-3, P. 97–103.
  13. Gavrilov N. V., Gushenec V. I., Koval’ N. N. Istochniki zaryazhennyh chastic s plazmennym emitterom [Sources of charged particles with a plasma emitter]. Ekaterinburg, UIF Nauka Publ., 1993, 148 p.
  14. Grigoriev S. V., Koval N. N., Devjatkov V. N., Teresov A. D. Effect of intensified emission during the generation of a submillisecond low-energy electron beam in a plasma-cathode diode. Proc. 9th Intern. Conf. On Modification of Materials with Particle Beams and Plasma Flows. Tomsk, 2008, P. 19–22.
  15. Koval N. N., Ivanv Yu. F. Nanostructuring of surfaces of metalloceramic and ceramic materials by electron-beams. Russian Physics Journal. 2008, Vol. 51, P. 505–516.
  16. Ivanov Yu. F., Krysina O. V., Petrikova E. A. et al. Complex electron-ion-plasma treatment of titanium: methods, structure, properties. High Temperature Material Processes. 2017, Vol. 21(1), P. 53–64.
  17. Koval N. N., Ivanov Yu. F. Jelektronno-ionno-plazmennaja modifikacija poverhnosti cvetnyh metallov i splavov [Electron-ion-plasma modification of the surface of non-ferrous metals and alloys]. Tomsk, NTL Publ., 2016, 312 p.
  18. Raghavan V. The Cr-Fe-N System in Phase Diagrams of Ternary Iron Alloys. Indian Inst. Metals, Calcutta. 1987, Vol. 1, Р. 171–182.
  19. Hertzman S. A. Study of Equilibria in the Fe-Cr-Ni-Mo-C-N System at 1273 K. Metallurgical Transactions, Section A: Physical Metallurgy and Materials Science. 1987, Vol. 18, Р. 1767–1778.
  20. Frisk K. A. Thermodynamic Evaluation of the Fe-Ni-N System. Z. Metallkd. 1991, No. 82,
  21. Р. 59–66.
  22. Lee B.-J. A. Thermodynamic Evaluation of the Fe-Cr-Ni System. J. Korean Inst. Met. 1993, Vol. 31, Р. 480–489.
  23. Ivanov Yu. F., Yeresko S. P., Klopotov A. A., Rygina M. Ye., Petrikova Ye. A., Teresov A. D. [Structural-phase state and properties of hypereutectic silumin treated with a pulsed electron beam]. Sibirskiy aerokosmicheskiy zhurnal. 2021, Vol. 22, No. 2, P. 371–382 (In Russ.).
  24. Ivanov Yu. F., Teresov A. D., Gromov V. Ye., Budovskikh Ye. A., Klopotov A. A. [Structural-phase states of nanostructured surface layers of VT1-0 titanium after combined electron-ionplasma treatment]. Reshetnevskiye chteniya: materialy XVIII Mezhdunarodnoy nauchnoy konferentsii. Krasnoyarsk, 2014, Ch. 1, P. 291–293 (In Russ.).
  25. Ivanov Yu. F., Yeresko S. P., Klopotov A. A., Petrikova Ye. A., Gromov V. Ye. [Features of the structural-phase state on the surface of silumin, formed by methods of electron-ion-plasma treatment]. Reshetnevskiye chteniya: materialy XXI Mezhdunarodnoy nauchnoy konferentsii. Krasnoyarsk, 2017. Ch. 1, P. 615–617 (In Russ.).
  26. Ivanov Yu. F., Yeresko S. P., Akhmadeyev Yu. X., Lopatin I. V., Klopotov A. A. [Development of a combined electron-ion-plasma method for the formation of multiphase submicro-nanosized alloys based on aluminum]. Reshetnevskiye chteniya: materialy XVIII Mezhdunarodnoy nauchnoy konferentsii. Krasnoyarsk, 2018, Ch. 1, P. 490–492 (In Russ.).
  27. Ivanov Yu. F., Klopotov A. A., Yeresko S. P., Petrikova Ye. A., Lopatin I. V. [Multicycle surface alloying of silumin with titanium]. Reshetnevskiye chteniya: materialy XXIII Mezhdunarodnoy nauchno-prakticheskoy konferentsii. Krasnoyarsk, 2019, Ch. 1, P. 526–528 (In Russ.).
  28. Ivanov Yu. F., Yeresko S. P., Akhmadeyev Y. K., Lopatin I. V., Klopotov A. A. [Development of a combined electron-ion-plasma method for the formation of multiphase submicro-nanoscale alloys based on aluminum]. Sibirskiy zhurnal nauki i tekhnologiy. 2019, Vol. 20, No. 1. P. 88–98 (In Russ.).
  29. Yeresko S. P., Ivanov Yu. F., Petrikova Ye. A., Teresov A. D., Klopotov A. A. [Complex electron-ion-plasma method of nitriding high-alloy steel]. Reshetnevskiye chteniya : мaterialy XXV Mezhdunarodnoy konferentsii. Krasnoyarsk, 2021, Ch. 1, P. 555–557 (In Russ.).

补充文件

附件文件
动作
1. JATS XML

版权所有 © Eresko S.P., Ivanov Y.F., Petrikova E.A., Teresov A.D., Klopotov A.A., 2021

Creative Commons License
此作品已接受知识共享署名 4.0国际许可协议的许可
##common.cookie##