Influence of some cinnamic acid derivatives on changes of the tricarboxylic acid cycle enzymes activity in rats under brain ischemia conditions

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The aim of the study was to assess the effect of certain derivatives of cinnamic acids on changes of the tricarboxylic acid cycle enzymes activity under experimental cerebral ischemia.

Materials and methods. Brain ischemia was modeled by irreversible right-sided coagulation of the middle cerebral artery. Test compounds: 4-hydroxy-3,5-ditretbutyl cinnamic acid, coumaric, coffee, synapic, cinnamic, 4-hydroxycinnamic and ferulic acids, as well as a reference drug — succinic acid was administered at a dose of 100 mg / kg per os for 3 days after the reproduction of ischemia. Then, changes in the activity of aconitase, citrate synthase, and α-ketoglutarate dehydrogenase were evaluated in the supernatant of the brain.

Results. The use of all the studied compounds and the reference drug helped to restore the activity of enzymes of the tricarboxylic acid cycle. The most pronounced results were obtained when animals were treated by 4-hydroxy-3,5-ditretbutyl cinnamic acid, against the background of which the activity of citrate synthase was higher than in animals treated by succinic, coumaric, coffee, synapic and ferulic acids by 1.53 (p < 0.05), 1.41 (p < 0.05), 1.4 (p < 0.05), 1.46 (p < 0.05) and 1.41 (p < 0.05) times, respectively. Also, with the administration of 4-hydroxy-3,5-ditretbutyl cinnamic acid, the activity of aconitase was higher compared to rats that were administered with succinic, coumaric, coffee, synapic and ferulic acids by 2.47 (p < 0.05), 2.49 (p < 0.05), 3.44 (p < 0.05), 2.59 (p < 0.05) and 1.9 (p < 0.05) times, respectively.

Conclusion. The administration of the studied in this work cinnamic acid derivatives helps to restore the activity of citrate synthase, aconitase, and α-ketoglutarate dehydrogenase in rats under conditions of cerebral ischemia. The most pronounced changes in the activity of enzymes were obtained with the iadministration of 4-hydroxy-3,5-ditretbutyl cinnamic acid.

Full Text

Restricted Access

About the authors

Andrey V. Voronkov

Volgograd State Medical University

Email: prohor77@mail.ru

MD, Professor, Director of the College

Russian Federation, Volgograd

Dmitry I. Pozdnyakov

Pyatigorsk Medical-Pharmaceutical Institute — branch Volgograd State Medical University

Author for correspondence.
Email: pozdniackow.dmitry@yandex.ru

PhD, Associate Professor of the Department of pharmacology with a Course of Clinical Pharmacology

Russian Federation, Pyatigorsk

Similla L. Adjiahmetova

Pyatigorsk Medical-Pharmaceutical Institute — branch Volgograd State Medical University

Email: similla503@mail.ru

PhD, Associate Professor of the Department of Organic Chemistry

Russian Federation, Pyatigorsk

Nadezhda M. Chervonnaya

Pyatigorsk Medical-Pharmaceutical Institute — branch Volgograd State Medical University

Email: n.m.chervonnaya@yandex.ru

PhD, senior lecturer of the Department of Organic Chemistry

Russian Federation, Pyatigorsk

Victoria M. Rukovitsina

Pyatigorsk Medical-Pharmaceutical Institute — branch Volgograd State Medical University

Email: v.m.rucovitcina@mail.ru

post-graduate student of the Department of Organic Chemistry

Russian Federation, Pyatigorsk

Eduard "T" Oganesyan

Pyatigorsk Medical-Pharmaceutical Institute — branch Volgograd State Medical University

Email: edwardow@mail.ru

MD, PhD. Professor, Head of the Department of Organic Chemistry

Russian Federation, Pyatigorsk

References

  1. Samai AA, Martin-Schild S. Sex differences in predictors of ischemic stroke: current perspectives. Vasc Health Risk Manag. 2015;11:427-436. https://doi.org/10.2147/VHRM.S65886.
  2. Dabrowska S, Andrzejewska A, Lukomska B, Janowski M. Neuroinflammation as a target for treatment of stroke using mesenchymal stem cells and extracellular vesicles. J Neuroinflammation. 2019;16(1):178. https://doi.org/10.1186/s12974-019-1571-8.
  3. Chamorro Á, Dirnagl U, Urra X, Planas AM. Neuroprotection in acute stroke: targeting excitotoxicity, oxidative and nitrosative stress, and inflammation. Lancet Neurol. 2016;15(8):869-881. https://doi.org/10.1016/s1474-4422(16)00114-9.
  4. Roy-O’Reilly M, McCullough LD. Sex differences in stroke: the contribution of coagulation. Exp Neurol. 2014;259:16-27. https://doi.org/10.1016/j.expneurol.2014.02.011.
  5. Gervois P, Wolfs E, Ratajczak J, et al. Stem cell-based therapies for ischemic stroke: preclinical results and the potential of imaging-assisted evaluation of donor cell fate and mechanisms of brain regeneration. Med Res Rev. 2016;36(6):1080-1126. https://doi.org/10.1002/med.21400.
  6. Rink C, Gnyawali S, Stewart R, et al. Glutamate oxaloacetate transaminase enables anaplerotic refilling of TCA cycle intermediates in stroke-affected brain. FASEB J. 2017;31(4):1709-1718. https://doi.org/10.1096/fj.201601033R.
  7. Gibson GE, Starkov A, Blass JP, et al. Cause and consequence: mitochondrial dysfunction initiates and propagates neuronal dysfunction, neuronal death and behavioral abnormalities in age-associated neurodegenerative diseases. Biochim Biophys Acta. 2010;1802(1):122-134. https://doi.org/10.1016/j.bbadis.2009.08.010.
  8. Воронков А.В., Поздняков Д.И., Нигарян С.А. Церебропротективное действие некоторых фенолокислот в условиях экспериментальной ишемии головного мозга // Фармация и фармакология. – 2019. – Т. 7. – № 6. – С. 332–339. [Voronkov AV, Pozdnyakov DI, Nigaryan SA. Cerebroprotective effect of some phenolic acids under conditions of experimental brain ischemia. Pharmacy & Pharmacology. 2019;7(6):332-339. (In Russ.)]. https://doi.org/10.19163/2307-9266-2019-7-6-332-338.
  9. Patel SP, Sullivan PG, Pandya JD, et al. N-acetylcysteine amide preserves mitochondrial bioenergetics and improves functional recovery following spinal trauma. Exp Neurol. 2014;257:95-105. https://doi.org/10.1016/j.expneurol.2014.04.026.
  10. Shepherd D, Garland PB. The kinetic properties of citrate synthase from rat liver mitochondria. Biochem J. 1969;114(3):597-610. https://doi.org/10.1042/bj1140597.
  11. Yan LJ, Levine RL, Sohal RS. Oxidative damage during aging targets mitochondrial aconitase. Proc Natl Acad Sci U S A. 1997;94(21):11168-11172. https://doi.org/10.1073/pnas. 94.21.11168.
  12. Lucas DT, Szweda LI. Declines in mitochondrial respiration during cardiac reperfusion: age-dependent inactivation of alpha-ketoglutarate dehydrogenase. Proc Natl Acad Sci U S A. 1999;96(12):6689-6693. https://doi.org/10.1073/pnas.96.12.6689.
  13. Carlsson N, Borde A, Wolfel S, et al. Quantification of protein concentration by the Bradford method in the presence of pharmaceutical polymers. Anal Biochem. 2011;411(1):116-121. https://doi.org/10.1016/j.ab.2010.12.026.
  14. Patel RAG, McMullen PW. Neuroprotection in the treatment of acute ischemic stroke. Prog Cardiovasc Dis. 2017;59(6): 542-548. https://doi.org/10.1016/j.pcad.2017.04.005.
  15. Yang X, Zhang Y, Xu H, et al. Neuroprotection of coenzyme Q10 in neurodegenerative diseases. Curr Top Med Chem. 2016;16(8):858-866. https://doi.org/10.2174/1568026615666150827095252.
  16. Adisakwattana S. Cinnamic acid and its derivatives: mechanisms for prevention and management of diabetes and its complications. Nutrients. 2017;9(2). https://doi.org/ 10.3390/nu9020163.
  17. Воронков А.В., Абаев В.Т., Оганесян Э.Т., Поздняков Д.И. Некоторые аспекты церебропротекторной активности 4-гидрокси-3,5-ди-третбутил коричной кислоты при ишемическом повреждении головного мозга в эксперименте // Медицинский вестник Северного Кавказа. – 2018. – Т. 13. – № 1-1. – С. 90–93. [Voronkov AV, Abaev VT, Oganesyan ET, Pozdnyakov DI. Some aspects of cerebroprotective activity of 4-hydroxy-3,5-di-tretboutyle of cinnamic acid in ischemic damage of the brain in experiment. Medical news of North Caucasus. 2018;13(1-1):90-93. (In Russ.)]. https://doi.org/10.14300/mnnc.2018.13025.
  18. Day DA, Hanson JB. Pyruvate and malate transport and oxidation in corn mitochondria. Plant Physiol. 1977;59(4):630-635. https://doi.org/10.1104/pp.59.4.630.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 Voronkov A.V., Pozdnyakov D.I., Adjiahmetova S.L., Chervonnaya N.M., Rukovitsina V.M., Oganesyan E.".

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 74760 от 29.12.2018 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies